
$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

The OpenII Toolkit for OpenEAI
Release 3 – July 2007 – DRAFT

Table of Contents
(items in the table of contents are hyperlinks)

What this guide covers ..3
About the OpenII Toolkit for OpenEAI ...3
What’s new ..6
Installation and setup...7
The Administrative Console...7
The Login Page..8
Authentication ..8
JAAS Configuration ...9
Authorization ..10
User Maintenance..11
Site-specific Branding ..12
Specifying Configuration Defaults..14
Importing the Core Services ..16
Package Descriptors..19
The Consumer Details Page..32
The Scheduled Application Details Page ..38
The Schedule Details Page ...41
The Command Details Page..43
The Routing Service ..61
The Routing Service Page...62
The Router Targets Page ..66
The Add Router Target Page...68
The Select Routing Criteria Page ..70
The Proxy Service Page ..72
Add Proxied Application Page ...77
Proxied Application Maintenance Page...78
Targets this Application can Send Requests to...80
Add New Proxy Target Page ...81
Select Target Proxy Criteria Page ...81
The Logging Service Page ..84
ELS Consumers Tab ...87
What happens when an application or gateway is started?88
Reports/Administrative views...89

 Page 1 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

The Transformation Service ..89
The RDBMS Connector Suite..89
The File Connector Suite ...89
The Test Suite Application...90
The Message Object Generation Application ..90
The Console Configuration Parameters ..91

 Page 2 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

What this guide covers
This book discusses the OpenII Toolkit for OpenEAI. It describes the components included in the
toolkit and how to install, use, and administer those components.

About the OpenII Toolkit for OpenEAI
The OpenII Toolkit for OpenEAI (a.k.a., the toolkit) is a suite of integration infrastructure
components and applications, which is…

• Comprised of enhanced and/or re-implemented versions of the OpenEAI Project router, request

proxy, and logger, with user interfaces that enhance ease of use and ease of administration.

• A set of general connectors for popular classes of technologies that must participate in an

integrated enterprise.

• Packaged and documented so it can be deployed in a basic configuration with minimal effort for
easy demonstration and initial use by untrained staff.

• Packaged and documented so that expanding the deployment for higher-volume, clustered

deployments is easy for trained staff.

• Tested and certified to run on relevant platforms.

• Tested and certified to run with relevant message transports.

• Accompanied by useful example integrations.

• Supported with an annual schedule of enhancements and platform and infrastructure

recertification to keep pace with new infrastructure requirements and operating system and
message transport upgrades.

The OpenII Toolkit for OpenEAI includes enhanced or re-implemented versions of all of the
OpenEAI Project reference implementations (see www.openeai.org). It also includes three new
general purpose connectors for commonly-used technology.

OpenII Administration Console for OpenEAI

This is an application and agent infrastructure that allows organizations using OpenEAI to view the
status of, start, and stop all OpenEAI applications from one web-based user interface. It uses the
existing Java Management Extensions (JMX) features of OpenEAI, but employs a new agent and
application for presenting these administration features to users.

This console also provides a simple mechanism to manage, generate, and publish important
OpenEAI artifacts which must be available to OpenEAI applications at runtime, such as XML
primed documents, Message Object APIs, and Enterprise Object documents, and OpenEAI
deployment descriptors. This allows organizations presently running separate applications to
generate and separate web servers to publish these artifacts to manage them centrally.

Once all of these artifacts are managed and generated by a central application using a specific
hierarchy it is then possible to generate prolific amounts of accurate, detailed documentation about
the integrations within an enterprise. For example, documentation such as that prepared by the
University of Illinois to document its messaging enterprise at http://www.aits.uillinois.edu/

 Page 3 of 93

http://www.openeai.org/
http://www.aits.uillinois.edu/GetEnterpriseData

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

GetEnterpriseData can be generated, along with descriptions of which applications are authoritative
for which message objects. The initial release of the OpenII Administration Console for OpenEAI
sets the stage for this documentation generation by providing the central repository, or registry, for
all of these artifacts, and generates some of this basic documentation. Subsequent releases of the
OpenII Administration Console for OpenEAI will focus on exploiting all possibilities for automatic
enterprise documentation generation.

OpenII Enterprise Documentation Application for OpenEAI

This application generates the enterprise integration documentation outlined above, in a web-
publishable format. It is most frequently used from within the administration console to generate
documentation for artifacts deployed from or registered with the administration console.

OpenII Request Proxy Service for OpenEAI

This application includes the functionality of the existing OpenEAI request proxy reference
implementation and adds the ability to implement the more complex proxy functions of filtering
fields and pluggable, complex proxy rules. The field filtering feature allows applications which may
only be authorized to see certain fields of an enterprise object to use the pre-existing message
support of an authoritative source by stripping restricted fields out of messages sent by the
authoritative source before forwarding them to restricted requesting applications. The complex
proxy rules provide a pattern for performing any arbitrary logic or subsequent messaging as part of
making the decision on whether or not to proxy a specific message. This request proxy will also be
improved to be fully manageable from within the console application. Subsequent releases of the
request proxy will focus on providing a way to enter user-defined proxy rules from within the
administration console.

OpenII Synchronization Message Routing Service for OpenEAI

This application includes the functionality of the existing OpenEAI synchronization message router
reference implementation and adds the ability to be fully managed from the administration console.

OpenII Logging Service for OpenEAI

This application includes the functionality of the existing OpenEAI logging service reference
implementation and adds the ability to be fully managed from the administration console. The
administration console provides web interfaces for viewing all logged synchronization messages
and republishing a selection of messages to any endpoint in the enterprise. It also provides a web
interface for viewing synchronization error messages and correlating them with the synchronization
messages that precipitated the error. The administration console functionality for the logging
service provides an interface for developing basic reports about logged messages and logged error
messages. Subsequent releases will focus on additional messaging reporting capabilities and a
synchronization error alert mechanism.

OpenII Test Gateway for OpenEAI

This application includes the functionality of the existing OpenEAI Any ERP Vendor Gateway
example implementation and adds the ability to be fully managed from the administration console.
It can quickly become a “straw man” authoritative source for any enterprise object.

OpenII Test Suite Application for OpenEAI

This application includes the functionality of the existing OpenEAI test suite application reference
implementation and adds the ability to be fully managed from the administration console. The

 Page 4 of 93

http://www.aits.uillinois.edu/GetEnterpriseData

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

administration console features for the test suite application include managing multiple
configurations and test suites, so specific configuration and test suite documents can be quickly
selected and used to execute tests from the administration console.

OpenII Poller Application for OpenEAI

This application includes the functionality of the existing OpenEAI destination poller reference
implementation and adds the ability to poll synchronization-message-consuming gateways by
publishing synchronization verification messages. The administration console features for the
poller application provide a mechanism for reporting on whether or not the synchronization
verification messages are being properly verified by synchronization-consuming gateways.

OpenII Message Object API Generation Application for OpenEAI

This application includes the functionality of the existing OpenEAI MOA generation application and
adds the ability to be run from within the administration console using message definitions that are
registered with the administration console.

OpenII File Connector for OpenEAI

The File Connector for OpenEAI is a suite of analysis artifacts, runtime artifacts, and applications
that provide general foundation to perform the following tasks:

• Provide mappings, translations, and transformations among enterprise objects and extracts.
• Read records from extracts, build enterprise objects from the content of the extracts, and

publish sync messages based on that content. Generally, these files will be built and dropped-
off by legacy systems: the general goal is that the transactions represented in the extracts be
applied at some other interested source.

• Consume synchronization messages from an authoritative source and build an extract file from
the content of those messages (i.e., using the enterprise objects contained within those
messages). This extract can then be processed by a legacy system that already expects to
process these types of files.

These components are general infrastructure. This means they will be used as often as possible to
process many different extracts and to use many different enterprise objects. The infrastructure is
not built with any one specific extract in mind.

OpenII Database Connector for OpenEAI
(Not available in release 1, will be added in a later release)

The Database Connector for OpenEAI is a suite of analysis artifacts, runtime artifacts, and
applications that provide general foundation to perform the following tasks:

• Provide mappings, translations, and transformations among enterprise objects and the tables of

a relational database.
• Detect changes in the state of objects mapped to database data, read data from the relational

database, build enterprise objects from the data in the database, and publish the appropriate
synchronization messages.

• Consume synchronization messages and apply them to the relational database.
• Provide request/reply message support for objects for which the relational database system is

authoritative.

 Page 5 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

These components are general infrastructure. This means they will be used as often as possible to
expose many different relational database systems. The infrastructure is not built with any one
relational database system in mind.

OpenII Transformation Service for OpenEAI

The Transformation Service for OpenEAI is responsible for consuming messages published or
produced by one system, ‘system A’, and transforming them into messages that are specific to
another system, ‘system B’. The transformed message is then sent on to interested targets. In the
request-reply modality (synchronous) the transformation service will also transform the response
sent by the target system into the appropriate response for the requesting application.

OpenII Web Service Connector for OpenEAI
(Will be added in a later release)

The Web Service Connector for OpenEAI is a suite of analysis artifacts, runtime artifacts, and
applications that provide mappings, translations, and transformations among messages and the
invocations of web services. This connector can be used to enable request/reply messaging with
applications exposed via web services or to consume synchronization messages and apply them to
applications that are exposed via web services.

These components are general infrastructure. This means they will be used as often as possible to
expose many different applications that expose their logic and data using web services. The
infrastructure is not built with any one application or service in mind.

What’s new
Release 3 in April 2007 is the second release of the toolkit. The following components are included
in release 3:

• The OpenII Administration Console for OpenEAI (updated)
• The OpenII Synchronization Message Router for OpenEAI (updated)
• The OpenII Request Message Proxy for OpenEAI (updated)
• The OpenII Logging Service for OpenEAI (updated)
• The OpenII File Connector suite for OpenEAI (updated)
• The Documentation Application for OpenEAI (updated)
• The OpenII Database Connector for OpenEAI (updated)
• The OpenII Test Gateway (updated)
• The OpenII Transformation Service (new)
• The OpenII Test Suite application (new)
• The OpenII Message Object Generation application (new)

There are other components included that are being released via the LGPL software license, as
allowed by the OpenEAI Software Foundation. They include:

• The Poller Application

The LGPL applications can be administered and run via the console but they are not fully integrated
into the console at this time. Commercial versions of these applications will be included and fully
integrated into the console in future releases.

 Page 6 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

Finally, the following components do not yet exist but will be available and integrated into the
console in future releases:

• The OpenII Web Service Connector for OpenEAI

Installation and setup
See the Getting Started Guide for detailed installation and setup steps.

The Administrative Console
The OpenII Administrative Console is a web-based application that provides users the ability to
configure and run OpenEAI-based applications and gateways via a point-and-click user interface. It
is specifically designed to ease and improve the administration and maintenance of OpenEAI-
based applications. In addition to providing an interface to manage any OpenEAI-based application
or gateway, the Console also provides specific interfaces for certain OpenII infrastructure
applications, such as the Routing Service, Proxy Service, Logging Service, Transformation Service,
Documentation Application, File Connector Suite, and the RDBMS Connector Suite.

Once the toolkit is downloaded, installed and all supporting components are running (i.e., the
database and application server) you can log into the application to start managing and running the
applications that are distributed. Currently, there are several sample applications distributed with
the Toolkit that can be managed via the Console. As new integrations are identified and the
analysis is performed to implement those integrations, new applications and/or gateways will be
added via the console. Then, those applications and gateways can be managed and run via the
console in the same manner as the samples that are provided.

To open up the console, open a browser and go to the following URL:
http://servername:port/consoleq4. Note, this URL may vary based on the application server being
used to run the console and deployment choices made during the deployment. The Toolkit
distribution ships with Tomcat and by default the URL is:
http://servername:8181/consoleq4.

 Page 7 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

The Login Page

The first page that appears is the Login Page. By default, the Toolkit ships with three console
users (user1, user2 and user3). These users are all members of the directory server that ships
with the Toolkit distribution (OpenLDAP). By default, user1 and user2 are known Console
Administrators. User3 is an existing directory server user but has not been registered as a console
user so by default, you must add this user before you can log in as them. This process is walked
through in the getting started guide. All users share the same default password of “password!”.

These users are simply provided for demonstration purposes and to confirm that the typical
installation was successful. Administration of an organization’s directory server is not something
covered by this document but the console does have the ability to authenticate against any LDAP
or Active Directory based directory.

Authentication
There are really two steps to authentication of a user. The first step is binding to a directory to
authenticate the user against credentials associated to that user in the directory. The console does
use Java Authentication and Authorization Service (JAAS) however, in version 3.0, the only JAAS
implementation available for authentication is LDAP/AD. The 4.0 release slated for Q32008 will
include additional implementations for other external authentication infrastructure.

 Page 8 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

With release 3.0, users may be authenticated against multiple trees in a single directory. So, if
some administrators or users are in the ou=Examples,ou=Users,dc=any-openeai-
enterprise,dc=org tree of the organization’s directory and others are in the
ou=Examples,ou=People,dc=any-openeai-enterprise,dc=org tree, the console will
consult both trees during initial authentication. The search base that the console should use for
authentication is specified in two places:

1. In the jaas.conf file that is deployed in the application server
2. In the web.xml file that is associated to the console instance being run

JAAS Configuration
jaas.conf – should contain the following entry which describes the authentication method and
implementation as well as the configuration required for that implementaiton. The values will be
site-specific but basically, these parameters are telling the JAAS implementation being used what
directory to connect to (URL), the search base(s) to attempt to bind to (SEARCHBASE) and the
bind filter that should be appended to the user name supplied by the user when they attempt to log
in (BIND_FILTER).

ldapAuth {
 com.openii.toolkit.jaas.LdapLoginModule required
 URL= "ldap://localhost:389"
 SEARCHBASE= "ou=Examples,ou=Users,dc=foo,dc=com"
 BIND_FILTER="uid=";
};

If multiple trees of a directory should be used for initial authentication, the SEARCHBASE attribute
listed above would contain a semi-colon delimited list of valid trees in the directory. Example:

SEARCHBASE=
"ou=Examples,ou=Users,dc=foo,dc=com;ou=Examples,ou=People,dc=foo,dc=com"

web.xml – should contain the following context-param entries. Their values will be site specific
but must match the corresponding values listed above in the jaas.conf file. These are the ONLY
context-param entries required in the web.xml and in future releases they will not be included in
web.xml at all. When the consoleq4.war file is exploded the first time, this file will be laid down as
is common for any web application of this type. Once the file exists on the file system,
administrators can modify it and the jaas.conf file referred to provide the site-specific values
required for the particular environment the console is running in.

<context-param>
 <description>URL to the LDAP server. NOTE: This must also be
specified in the jaas.conf file (or other appropriate JAAS
configuration)</description>
 <param-name>ldapHost</param-name>
 <param-value>ldap://localhost:389</param-value>
</context-param>

<context-param>
 <description>semi-colon delimited set of distinguished names that map
to the location in a directory server where user authentication will

 Page 9 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

occur. NOTE: This property must also be specified in the jaas.conf file
(or other appropriate JAAS configuration).</description>
 <param-name>searchBaseDn</param-name>
 <param-value>ou=Examples,ou=Users,dc=foo,dc=com</param-value>
</context-param>

<context-param>
 <description>The directory attribute that will be appended to the user
name that the user logs in as. NOTE: this must also be specified in the
jaas.conf file (or other appropriate JAAS configuration).</description>
 <param-name>bindFilter</param-name>
 <param-value>uid=</param-value>
</context-param>

See the Console Configuration Parameters section of this document for more information about
these and other configuration parameters and their purpose.

If the user types an incorrect User Name or Password, an error will be displayed on the screen that
indicates there was an error and provides instructions to the user depending on the nature of the
error.

Once the user is successfully authenticated against the directory, the console consults its database
to see if the user is a known console user and what role(s) are associated to the user for
authorization. If the user is successfully authenticated against the directory but they are not a
known “console user” an error message will be displayed indicating this (see figure x). Console
users can be maintained from within the console (see the Authorization section below).

Figure x – the user ‘deptuser1’ was successfully authenticated against the directory but they are not
a registered user of the Console.

Authorization
For release 3.0, authorization is controlled internally by the console. In this release, there are two
levels of authorization available:

- ConsoleAdministrator – which is allowed to manage and run applications as well as
manage other users of the console.

- ApplicationAdministrator – which is allowed to manage and run applications but cannot
manage other users.

In version 3.0, the only difference between these two users is that ConsoleAdministrators can
register and maintain users via the User Maintenance link on the General Tab which will allow them
to log into the console and mange applications. In order to register a new user, that user must exist
in the directory that the console is configured to authenticate against (see Authentication).
ApplicationAdminstrators can simply administer applications.

 Page 10 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

User Maintenance
When a ConsoleAdministrator follows the User Maintenance link on the General tab, they are taken
to the page seen below. Here, they may view users currently allowed to use the console in some
capacity. By clicking on the Details button, they can view and/or modify roles and permissions are
assigned to that user.

Registering a new user
To register a new user, a ConsoleAdministrator clicks on the “Register New User” button on the
User Maintenance page. This will take the administrator to a page where they may search a
directory for potential users that might be added. The directory tree that is searched is based on
the settings specified above in the Authentication section (URL/ldapHost,
SEARCHBASE/searchBaseDn and BIND_FILTER/bindFilter).

The administrator may enter a full or partial UID (directory User Name) into the UID search field and
click the Search button to narrow the list of items presented.

 Page 11 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

Once the user that should be added it found, the administrator may click on the Add… button to
select the Role that should be associated to that user. As mentioned before, in release 3.0, the
only roles available are “ConsoleAdmininstrator” and “ApplicationAdministrator”. Once the role is
selected, clicking the Save button will associate that user to the selected role and the user will be
allowed to log into and use the console. At this time, the only difference between the two roles is
that ConsoleAdministrators may access this portion of the application (User Maintenance) and
ApplicationAdministrators may not.

[TODO – discuss how to configure the console to use someone other than user1, user2 or
user3 the first time]

Site-specific Branding
Vendors and/or site administrators may specify the header image that should be used by the
console. The header image is an organization-specific image that can be used to give the
application a specific “look and feel” for the organization that is using the console or for vendors that
may be including the console with another suite of products. The configuration parameter that
controls which header image to use is called headerImagePath. The value associated to this
parameter should be the fully qualified path to the image that you wish to use. For more

 Page 12 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

information about this and other configurable parameters and their purpose, refer to the Console
Configuration Parameters section of this document.

Figure x - Example header image which can be replaced with an image specific for your site.

 Page 13 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

Specifying Configuration Defaults
During installation of the console, several runtime configuration properties are established that are
used by applications maintained via the console as well as by the console itself. Many of these
parameters are “general” and apply to any environment regardless of choices made by an
organization that uses the console and the other components of the Toolkit. However, all
configuration parameters that may be site-specific must be specified the first time a new instance is
brought online. The console knows if it has been fully configured previously and if it has not, it will
prompt the user to provide information about these site-specific configuration parameters.

Figure x – the console recognizes that this instance has not been fully initialized so it will prompt the
user to provide post-installation information regarding the site-specific configuration parameters.

 Page 14 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

Figure x – Administrators specify information that is unique to their environment that the console
can use during application configuration and management to make the user experience more
efficient.

This interface is used during initial “post-installation” setup but can also be accessed via the
Configuration Defaults link from the General tab. At any time, administrators can come to this page
and change values associated to these parameters. Once a value is changed, the new value can
be propagated to all applications that use the relevant property. For example, if during initial post-
installation setup, a value of com.foo.jdbc.Driver was used for the DriverName property but
at some point in the future it was decided to use a different “default” JDBC driver implementation,
the administrator could come to this page and change the DriverName value from
com.foo.jdbc.Driver to com.foo.jdbc.v2.Driver and click the Apply to All button to have
that change propagated to all applications that use database connections.

During post-installation setup, the following site-specific properties must be specified (see the
Console Configuration Parameters section of this document for more information about these
parameters):

 Page 15 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

- DriverName
- environmentName
- InitialContextFactory
- MailHost
- ProviderUrl

Once all site-specific properties have been specified and saved, the user will click on the Finish
button to continue. During post-installation setup, clicking on the Finish button will take the user to
the Import Applications page, because this is an “empty” ESB at this point (i.e., none of the core
services exist yet). On the Import Applications page, the user will be given the opportunity to import
the core services and any other applications that they wish to import at this time.

Importing the Core Services
The figure below shows the Import Applications page. The user is taken to this page the first time
an instance of the console is brought online to “install” the Core Services as well as any other
applications that may be of interest to the organization from the “Sample Enterprise” that is usually
included with a distribution of the ESB. Additionally, administrators can access this page by
following the Import link on the General Page when/if additional applications need to be deployed
into the ESB.

 Page 16 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

The general process for importing an application (or set of applications) is as follows:

1. The user clicks the Browse button and locates a “package descriptor” which describes the

content of the package to be imported. A package descriptor is an XML artifact that describes
all of the components related to the application(s) being imported. This may include:
configuration artifacts, libraries, sample messages, enterprise objects documents which are all
part of every OpenEAI based application. See the Package Descriptor section below for more
information regarding the purpose and structure of a package descriptor and how they are used
by the Console.

 Page 17 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

2. Once the user has located the appropriate package descriptor, they click on the Upload File

button. The console then reads the package descriptor and lists all applications that are
described in that package descriptor.

3. At this point, the user can optionally choose to search and replace anything that might need to
be changed in the source artifacts described by the descriptor but this should be performed
with caution. Generally, an application administrator will know the content of the descriptor and
know whether or not any replacements need to occur.

4. The user may optionally modify the “ESB Home” that should be associated to the package
being imported. Generally, a package is created in one environment and this process is
deploying it into another environment. Because of this, it may be necessary to tell the console
the source “ESB Home” so it knows what value to replace with the target ESB Home which is a
default parameter established when performing the post-installation steps related to the default
configuration parameters above.

5. The user may also specify information about the “configuration base” associated to the source
package so that value may be replaced with the value currently associated to this instance of
the ESB.

6. If desired, the user can click the Select All button to select all applications contained in the
package or they can select individual applications from the package to import if they do not
wish to import all applications contained in the package.

7. Finally, by clicking the Import Selected Applications button, the ESB will process the package
descriptor and import all artifacts associated to each application included in the package. While
it’s doing this, it will automatically replace certain key configuration parameters with values that
have been specified during the post-installation steps related to the default configuration
parameters mentioned above.

 Page 18 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

[todo: More general information here about package descriptors and their purpose etc.]
Purpose of a package descriptor
Content
Variations (config only, config plus other artifacts, pointing directly to a deployment
descriptor/config doc)

Package Descriptors
Package descriptors are XML artifacts that describe the content of an application or suite of
applications that will be imported into the runtime environment of an instance of the ESB. They are
similar to .war files or .ear files which describe the runtime components needed for an application
server to run a standard J2EE web application for example. These package descriptors provide
information about the runtime artifacts required to run an OpenEAI based application and the ESB
“imports” configuration and other runtime artifacts from the package to the appropriate places in the
runtime environment.

Generally, when a new connector or service is built, or when an instance of a general connector,
like the RDBMS Connector needs to be deployed, it is tested in a non-production environment
before it is deployed to a production environment. Once the connector or service is deemed
“ready” for production, it should be packaged up to make deployment into that production
environment most efficient. Once the package is ready, it can be imported using the same steps as
described above in the Importing Core Services section of this document. It is recommended that
a structured approach like this be followed to ensure consistency during deployment.

There are several different types of package descriptors that may be used and examples of each
are included with the standard Toolkit sample enterprise that licensed users can download, install
and use as a starting point. The various types of packages and artifacts that can be imported are
described below. The type of package created by a deployment administrator depends on the
application being deployed and the state of the target runtime environment it will be deployed into.

Standalone configuration document
The simplest way to import an application into the ESB is by importing that application’s
configuration from an existing OpenEAI deployment descriptor (a.k.a., config doc). During the
import process, administrators can simply point to an existing deployment descriptor and select it.
The console will determine which applications exist in that descriptor and present the user with a list
of all applications. Administrators can then select the application(s) they wish to import and click
the “Import Selected Applications” as described above. When this happens, the configuration for
this application will be imported and stored in the console’s database. This is useful when all other
required artifacts already exist in the target runtime environment and nothing else needs to be
copied over. A typical use of this type of import is when an organization is upgrading from a
previous version of the ESB or when an application that has never been run from within the console
needs to be brought in.

Named Application(s), configuration only from a package

 Page 19 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

Named application(s), configuration and other artifacts from a package

All applications, configuration and other artifacts from a package

 Page 20 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

The General Tab
Once a user logs in successfully and performs the initial post-installation setup, this is the first page
they see.

 Page 21 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

This tab presents the user with a navigation tab set. On the General Page, the General tab will
be selected. The user may reach the General Page by either:

1) Successfully logging in, or
2) Clicking on the “General” tab from the tab set
3) Clicking on the Home link

The General Page lists all OpenEAI-based components that are not part of the Enterprise
Service Core (ESC), i.e. not the Routing Service, Proxy Service, Logging Service, Documentation
Application, etc. These core services, part of the OpenII Tool Kit for OpenEAI, have dedicated
interfaces in the Console.

The General Page provides the following high-level functions:

• Retrieves information about the applications and gateways already being managed
by the console (those running and those available to run) based on existing configuration
documents that have been used to either start or view applications.

• Builds a list of applications from that configuration information that the user can
manage.

• Displays that list of components and each component’s status, i.e., if it is running,
stopped, etc. Also provides the description of the application/gateway which can be
displayed by checking the Show Description check box.

• Builds a link based on the application/gateway ID that when clicked on will take the user
to a new page where the user can manage the application (see Application Details
page below). When a component is selected, the Application Details page will be
opened and the user will be able to modify configuration information related to the
application. Here, the user can manage consumers associated to the application, manage
the scheduled applications associated to the application and view/modify log information
that the application writes to.

• Displays the amount of time the application has been running (if it’s running)

One of the core functions of the console is to configure and manage OpenEAI based applications,
gateways, connectors, services, etc. The configuration actions performed via the console ultimately
result in the creation or modification of a standard OpenEAI deployment descriptor (a.k.a., the
config doc) that is used by all OpenEAI based applications to configure themselves. These
documents contain all the information required by an application in order to perform the business
logic associated to them. In-depth details regarding OpenEAI deployment descriptors are available
in the OpenEAI API Introduction document on the OpenEAI Project website.

With release 3.0 all application configurations are stored in a database and the console is
configured via standard J2EE based configuration practices to point to that database. It reads the
database to determine which applications it is currently managing and when changes are made to
the configuration of an application, those changes are stored back to the database. When an
application, or group of applications, are imported into the console via the Import Application
process described above, the relevant components from the package associated to those
applications is stored in the console’s T_APP_CONFIGS table. This table is created during
installation and stores each application’s configuration as a single row. Each time a change is
made to the configuration of an application and it’s saved, a new row is written to the

 Page 22 of 93

http://xml.openeai.org/site/doc/ApiIntroduction.htm

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

T_APP_CONFIGS table for that application. This provides the ability for the console to display a
“revision history” for each application it is managing. Future versions of the console will provide
even more “version control” type features to allow an administrator to view the differences between
certain revisions of an application’s configuration, restore a previous version etc. In version 3.0 the
administrator simply has the ability to see who made changes to an application’s configuration at a
given time.

Below is an overview of some of the new or enhanced features on this page

- Links

o New
 Takes the user to the Specify General Application Information

o Import
 Takes the user to the Import Application page

o Reports
 Takes the user to the Documentation Service page

o Configuration Defaults
 Takes the user to the Configuration Defaults page

o Logs
 Takes the user to the Log Maintenance page

o User Maintenance
 Takes the user to the User Maintenance page

- Buttons
o Start Selected

 Starts the selected application(s) in the application list
o Stop Selected

 Stops the selected application(s) in the application list
o Delete Selected

 Deletes the selected application(s) in the application list
o Stop All

 Stops all applications that are running, including the Core Services
o Start Core Services

 Starts the Core Services: com.openii.SyncRouter,
com.openii.RequestProxy, and com.openii.LoggingService all
together.

o Stop Core Services
 Stops the Core Services: com.openii.SyncRouter,

com.openii.RequestProxy, and com.openii.LoggingService all
together.

o Clear Selected
 Clears selected applications from the application list

- Search and Replace
o Use this interface to perform mass "search and replaces" in the configurations of

applications being managed by this ESB. IMPORTANT: This action should be
performed with extreme caution

- Verbose Logging
o Select to generate more detail in the application log

- Show Descriptions
o Select to display a description of the application in the application list

- Show Revision Info
o Select to display a Revision, Last Modified Date and Last Modified By of the application

in the application list
- Table Columns

 Page 23 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

o Application Id
 The application name/Id that has been assigned to the application at setup.
 It is recommended that these IDs be as descriptive as possible so anyone who

sees the ID can make some assumptions as to the nature of the application.
o Status

 Run status of the application (Running, Stopped, Error)
o Revision

 How many times the application has been modified
o Last Modified by

 Who last modified the application
o Last Modified Date

 The date the last modification was saved
o Elapsed Time

 Time that the application took to execute

 Page 24 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

The Application Details Page
When the user clicks on a specific application link on the General Page, they are taken to the
Application Details Page. The Application Details Page is the first in a series of
pages that allow the user to manage OpenEAI based applications/gateways.

The console treats every application listed in the General Config Document as an application. In
OpenEAI terms, applications that consume messages and execute business logic based on the
message consumed are called Gateways. Applications that execute business logic based on a
schedule are called Scheduled Applications. This screen presents the user with a list of both
message consuming and scheduled applications.

Gateways are Java applications that consume messages from JMS topics or queues and perform
some business logic depending on the message consumed. A gateway is made up of several
pieces. There is a process (i.e., the JVM – Java Virtual Machine), a consumer that connects to a
topic or queue, and one or more commands that are executed when a message is consumed by
the consumer. The command is where the application logic code actually resides. It’s a Java class
that implements a certain set of business logic, based on integration analysis. So, from the
console’s perspective, when maintaining a gateway, you’re telling the gateway which consumers to
use, what topics and/or queues those consumers to connect to, and what business logic (via
Commands) to execute when a message is consumed. For in-depth information about gateways,
refer to the OpenEAI API Introduction Document.

Scheduled Applications are Java applications that perform some business logic based on a
configurable schedule. When the schedule is met, the business logic is executed via similar
commands as mentioned above in the Gateway discussion. The only difference between a
Scheduled Application and a Gateway is the method in which the business logic execution is
triggered. Business logic associated to gateways is executed when a message arrives on a JMS
Topic or Queue. The gateway’s consumer consumes the message, determines which command to
execute and invokes the business logic in that command. Business logic associated to scheduled
applications is executed when a schedule is met. The schedule is met, the scheduled app
determines which command to execute and invokes the business logic in that command. That
schedule can be configured via the console and tells the application when to execute the business
logic. Schedules can be of several types:

- simple schedules like “execute the business logic immediately, when the application starts”
- a bit more complex like “executed the business logic every n seconds” where n is the

amount of time in between the execution of the business logic and can be specified via the
console

- even more complex like “execute the business logic every Monday, Wednesday and Friday
at 1:00PM”. This particular type of schedule CANNOT be configured via the console in this
release but will be available in future releases.

 Page 25 of 93

http://xml.openeai.org/site/doc/ApiIntroduction.htm

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

On the Application Details Page, the user is presented with several pieces of information
regarding the selected application, including:

• The “ID” associated with the application, which the user may change. Application IDs
are important pieces of information that can be used to better organize your enterprise. So,
some thought should be given as to the types of IDs that should be used. Generally, it is
recommended that these IDs be as descriptive as possible so anyone who sees the ID can
make some assumptions as to the nature of the application.

• The description associated with the application, which the user may also change. Like
IDs, descriptions are important. They provide a convenient way to describe the high-level
function of the application and can be very useful in documenting your enterprise. If clear
and informative application IDs and descriptions are used, applications such as the
Documentation Application can use this information to present a clear picture of your
organization that can be shared among departments and with partners. This type of

 Page 26 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

“picture” can be very valuable when performing things such as integration analysis, impact
analysis, and simply communicating about what an organization does.

• The status of the application (Running or Stopped).
• A list of consumers associated to the application which, when selected, may also be

modified on subsequent pages (further details on this are presented below). As mentioned
above, a gateway is a Java application that consists of one or more OpenEAI foundation
objects called “Consumers.” OpenEAI consumers connect to JMS topics or queues and
execute specific business logic when a message is consumed off of that topic or queue.

• A list of scheduled applications associated to the application which, when selected,
may also be modified on subsequent pages (further details on this are provided below). As
mentioned above, the scheduled application foundation is Java foundation that allows
certain business logic to be executed on a particular schedule.

• View and configure the log associated to this application.

In addition to this information that the user may manage, other “application-specific” functions are
available. The user has the ability to perform the following functions related to the selected
application on the Application Details Page:

• Start the application by clicking on the “Start” button. When you start a gateway or
application managed by the console, it will initiate a new native process to run that
application in. Because of this, it is important to remember that when you start a
gateway/application from within the console, you should always stop that
gateway/application using the console. This will prevent the creation of troublesome
“orphan” processes that will remain running even when/if the console is closed or even if
the application server is stopped. This behavior may vary based on the operating system
being used, but in general, any gateway/application that is started via the console should
also be stopped via the console. Refer to the what happens when an application or
gateway is started section of this document for more information.

• Stop the application by clicking on the “Stop” button. This will terminate the process
associated to the running gateway that is currently selected.

• Create a copy of the current application and create a new application that looks exactly
like this gateway (named differently) then they can make changes to that gateway to make
it unique.

• Delete the current application (as long as it is not running) by clicking on the “Delete”
button.

• Rename the current application by clicking on the “Rename” button.
• Save any changes made to the configuration of the application via any of the other

screens associated to managing a application (discussed later). Then, when the
application is restarted, it will use the new settings.

As mentioned above, if present, a list of consumers associated to this application is presented on
this page.

 Page 27 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

Once the user has selected a consumer from the list, they may perform the following actions on that
consumer:

• Edit the consumer’s configuration by clicking on the “Edit…” button. When the user
clicks on the “Edit…” button, they will be taken to the Consumer Details Page (see
Consumer Details section below) where they can change specific information related to the
consumer itself. The user may also double click on a consumer from the list to be taken to
the Consumer Details Page.

• Create a new consumer from scratch by clicking on the “New…” button which will walk
the user through a “wizard” for creating a new consumer.

• Delete the selected consumer by clicking on the “Delete…” button.
• Create a copy of an existing consumer that looks exactly like the selected consumer by

selecting the “Copy…” button. When a consumer is copied, the user will be taken to the
Consumer Details Page where they can change the consumer’s name (required) and
other consumer configuration information as they see fit (such as the queue or topic to
which it is connecting, what commands are to be executed, etc.).

• Lookup consumers by clicking on the “Lookup” button. When the user clicks on the
“Lookup…” button, they will be taken to the Lookup Component page. The user can
then select from the dropdown list of consumers used by other applications to either Copy
or Edit.

 Page 28 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

In addition to consumers, a list of Scheduled Applications may also be presented on this page on
the Scheduled Apps tab. This tab presents a list of any Scheduled Applications associated to the
primary application that may be managed similarly as the consumers listed above.

The user may perform the following actions on the Scheduled Applications listed:

• Edit the scheduled application foundation configuration by clicking on the “Edit…”
button. When the user clicks on the Edit… button, they will be taken to the Scheduled
App Details Page (see Scheduled Application Details section below) where they can
change specific information related to that scheduled application itself. The user may also
double click on a scheduled application from the list to be taken to the Scheduled
Application Details Page.

• Create a new scheduled application from scratch by clicking on the “New…” button
which will walk the user through a “wizard” for creating a new scheduled application.

• Delete the selected scheduled application by clicking on the “Delete…” button.
• Create a copy of an existing scheduled application that looks exactly like the selected

scheduled app by selecting the “Copy…” button. When a scheduled app is copied, the
user will be taken to the Scheduled Application Details Page where they can
change the scheduled app’s name (required) and other configuration information as they
see fit.

 Page 29 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

Finally, the user can select the Logs tab where they will be presented with a link to configure the
log associated to this application and a list of all known log files that are being used by this and
other applications. If the user follows the “Configure Application’s Logger” link, they will be taken to
the Logger Configuration page where they can control the behavior of the Log4J logger
associated to this application. If they select one of the log files in the list of known logs, they will be
able to view that log.

Below is an overview of some of the new features associated to the Application Details
page:

- Deployment Status -
- Revision History

o The user is taken to a page that displays a table of the complete revision history for the
selected application. This is useful for keeping track of who makes changes to the
applications managed by this instance of the ESB.

- View/Edit runtime environment configuration
o The JVM Process Properties page should open. Everything should be blank except for

the Process Identifier and Console Identifier text fields. Those fields should be
disabled.

- View most recently used runtime environment
o The Recently Used Runtime Environment page should open. There should be six

categories of runtime information displayed:
 JVM Arguments
 Application Id
 Application Runner
 Java Home
 Classpath
 Config element file spec

o All items should be collapsed initially.
- View most recent test suite summary

 Page 30 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

o The TestStepSummary tree folder should expand and you should see the following
child nodes:

 TotalSteps - Number of steps in the test suite
 PassedSteps - Number of steps that executed successfully in the test suite
 FailedSteps - Number of steps that executed unsuccessfully in the test suite

o Click on the View Entire Summary Document link to see the entire Test Suite Summary
document. The entire Test Suite Summary document for the last run of the test suite
will open in a new browser window.

- Search and Replace
o Opens the Search and Replace page. Use this interface to perform mass "search and

replaces" in the configurations of applications being managed by this ESB.
o IMPORTANT: This action should be performed with extreme caution

- Export/Edit XML Configuration
o The Export/Edit Application Configuration page should open. The text area in the

middle of the page should be populated with XML content that is the configuration for
this application.

o Warning: Changes made on this screen should be made with caution. Click the Edit
button to manually edit this application's configuration. Click the Save button to save
the changes made to the configuration.

- Lookup Consumer
o When the user clicks on the “Lookup…” button, they will be taken to the Lookup

Component page. The user can then select from the dropdown list of consumers
used by other applications to either Copy or Edit.

 Page 31 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

The Consumer Details Page
When a user selects a specific consumer on the Application Details Page (and on other
pages) and chooses to edit that consumer, they will be taken to this page. The Consumer
Details Page provides an interface for modifying core pieces of information related to a
consumer. Currently, this configuration information is specific to JMS. As a result, when
configuring an OpenEAI-based consumer, the user will specify settings for features such as the
queue to which the consumer will connect, the ConnectionFactory that will be used to connect
to the broker, and other similar JMS-specific items.

Below is a list of all items that may be specified for a consumer related to how the consumer
connects to the messaging infrastructure (broker):

 Page 32 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

• Name: This is the name by which this consumer is known in the application’s AppConfig
object. When a developer or an application wants to retrieve consumer from the
AppConfig object, it may do so by specifying this name in the getObject(String
name) method of the AppConfig object. This name should be as descriptive as possible
so developers and administrators can use the name to understand what the consumer
means to the gateway being developed. For more details regarding the AppConfig
object, refer to the OpenEAI API Introduction Document.

• Destination: This is the name of the JMS queue or topic from which this consumer will
consume messages. This is also an “administered object” stored in the server or other
JNDI store whose location is specified in “Provider URL” (see below).

• Connection Factory Name: This specifies the lookup name for the JMS connection
factory that will be used by this consumer. This can be either a
TopicConnectionFactory or a QueueConnectionFactory, depending on the type
of consumer being configured. A JMS connection factory contains JMS provider-specific
about how to connect to the JMS provider. Connection factories are “administered objects”
and are stored in a directory server or other store whose location is specified in “Provider
URL” (see below). By using connection factories and JNDI, the connection behavior for a
consumer is not vendor-specific, which enables organizations to switch JMS providers
relatively easily.

• Initial Context Factory: This is the fully-qualified name of the class the consumer will use
to obtain an initial context with the directory server or JNDI store where the administered
objects reside. When an organization uses an LDAP repository to store JMS administered
objects, this will almost always be com.sun.jndi.ldap.LdapCtxFactory. This class
name will be based on the repository being used to store JMS administered objects.

• Provider URL: This is the location in the directory server or other JNDI store where the
factories and destinations (JMS administered objects) reside. Examples include:
rmi://localhost:1099/JndiServer and
ldaps://localhost:636/ou=PointToPoint,ou=Dev,ou=AdministeredObjects

• Security Principal: This value specifies the distinguished name of the directory user
allowed access the administered objects in the directory server or other JNDI store at the
location specified by Provider URL. Example: uid=Gateway1,ou=Dev,ou=Users.
Note: Security Principal is not used by all JNDI stores.

• Security Credentials: Specifies the password associated with the Security Principal.
• Object Class: Specifies the type of consumer that should be instantiated when the

gateway is started. This should be the fully-qualified class name of object. Currently, this
should only be one of the following classes:
org.openeai.jms.consumer.PointToPointConsumer for point-to-point
(request/reply) message consumption, and
org.openeai.jms.consumer.PubSubConsumer for publish/subscribe
(synchronization) message consumption.

• Generic Response: [todo - need to add details and get it into the Console].

Below is an overview of the new features associated to the Consumer Details page:

- Propagate Changes
o Click on the checkbox to automatically propagate destination name changes to

other producers in other applications.
- Initial Context lookup

 Page 33 of 93

http://xml.openeai.org/site/doc/ApiIntroduction.htm

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

o When the user clicks on the “Lookup…” link, they will be taken to the Lookup
Component page. The user can then select from the dropdown list of
InitialContextFactory values used by other applications. The user can select a
value that they would like to apply to the Consumer and click on the Apply
Changes button to apply the changes.

- Provider URL lookup
o When the user clicks on the “Lookup…” link, they will be taken to the Lookup

Component page. The user can then select from the dropdown list of ProviderUrl
values used by other applications. The user can select a value that they would like
to apply to the Consumer and click on the Apply Changes button to apply the
changes.

• Thread Pool: This is the main thread pool in which business logic is executed via

“Commands” (see below). When the consumer consumes a message, it will pass the
content of the message to the appropriate command and the command will execute the
business logic associated to that message. Since a thread pool is used, the onMessage
method in the consumer's MessageListener does not have to wait for the command to
complete before consuming the next message. These thread pools should be configured
to check their status prior to adding the command execution as a job to the pool by setting
“Check Before Processing” to “true”. In this case, the consumer will make sure the
maximum number of threads is not in use before attempting to execute the command. If
the thread pool is busy (maximum number of threads are already in use), it will stop
consuming messages and wait until the thread pool can accept more command execution
transactions. This reduces the risk of command executions being missed if the gateway
terminates abnormally.

 Page 34 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

o Name: This is the name of the thread pool.
o Maximum Threads: This is the maximum number of threads that will ever be in

progress at the same time.
o Minimum Threads: The minimum number of threads that will be allocated to the

thread pool.
o Check Before Processing: (true or false). Checking this check box (true) tells

the consumer to make sure there is at least one available “slot” in the thread pool
before adding another command execution to the pool.

If “Check Before Processing” is set to “true” the consumer will wait until there is at
least one available “slot” in the thread pool. If it is set to “false” the consumer will
continue to add command executions to the thread pool but they will not be
processed until a “slot” becomes available. If command executions are continually
added to the pool that aren’t being processed (because the pool is busy) and the
application for some reason crashes, all of those command executions and
corresponding consumed messages will be lost. Therefore, the “Check Before
Processing” flag can be valuable in controlling how many command executions are
in memory and potentially at risk at a given time.

• Message Balancer: The database connection pool is used by the MessageBalancer in

PubSubConsumers that consume messages off of JMS Topics to ensure that only one
consumer per publish/subscribe destination actually processes a message. The
MessageBalancer is an infrastructure component that PubSubConsumers use to
determine if another consumer is already processing the message. If so, the consumer will
not process the message. Currently, the message balancer uses a database to store the
MessageId of the message that is consumed to make this determination. This database
connection pool is a pool of connections to that repository.

Note on database pools: For gateways that consume Request-Reply messages (i.e.,
PointToPointConsumers that consume messages from JMS queues) a
MessageBalancer is not necessary, because when a consumer consumes a message
from a queue, that message is no longer available to any other instance that may be
connected to that queue. In other words, the first consumer that gets the message
processes it. If a database connection pool is not specified (for pub/sub consumers), the
consumer will log a warning message during initialization, and all messages consumed by
the consumer not using a database connection pool will be processed. If an organization
runs multiple instances of gateways that consume sync messages (which should be the
case to ensure high availability) this will lead to issues because multiple consumers will be
consuming and processing the same messages. In essence, the same messages will be
processed more than once by different instances of the gateway. Obviously, this is not
desirable. For example, in the case of sync messages, multiple instances of the same
gateway might be instructed to create the same record. This will lead to, depending on the
underlying data structure into which the data is being inserted, unnecessary duplicate key
violation errors or, even worse, duplicate data being stored in the application consuming
the sync messages.

 Page 35 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

The following information may be specified on the Message Balancer->General Info sub-
tab:

o Pool Name: The name of the pool. This is the name by which applications may
retrieve the pool from the AppConfig object associated to the application or
command.

o Initial Pool Size: Integer value specifying the number of connections to allocate to
the pool initially.

o Maximum Pool Size: If specified, this is the maximum number of connections to
allocate to the pool. In this case, the pool will only create additional connections if
needed until this maximum number is reached. If it is not specified and additional
connections are needed, the pool will create connections indiscriminately.

o Object Class: The fully-qualified class name of the connection pool to instantiate.
For example, if an organization is using the OpenEAI database connection pool,
this value would be org.openeai.dbpool.EnterpriseConnectionPool.

o Verification String: A string used to externalize the verification of database
connections as they are retrieved from the pool to ensure that a reliable connection
is being returned. There have been cases where not all JDBC implementations
support the isClosed() method in the JDBC specification. So, this is not always
a reliable way to determine if a connection is “good.” Users can use this string to
provide a simple and efficient alternative to the isClosed() method to verify
connection status. Note: having a “simple” and “efficient” alternative is essential
here because if a verification string is specified, the pool will attempt to execute
that statement each time a connection is returned from the pool to verify its status.

The following information may be specified on the Message Balancer->JDBC Settings
sub-tab:

 Page 36 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

o Driver Name: The name of the JDBC implementation to use for the connections in
this pool. For example: oracle.jdbc.driver.OracleDriver.

o Connect String: The name of the target database to which the connections in this
pool should connect. For example:
jdbc:oracle:thin:@localhost:1521:DB_NAME. This will be a provider-
specific value.

o User Name: The name of the user to use to connect to the database.
o Password: The password associated to the user.

The above information relates to how the consumer operates (i.e., how it connects to the JMS
provider, how its thread pool works, and what database it uses for its message balancer if it is a
PubSubConsumer). To instruct the consumer regarding what business logic needs to be executed
when a message is delivered to the queue or topic to which it is connected, the user must associate
at least one command to that consumer. Commands are Java classes that implement the business
logic which will be executed when the consumer consumes a message. So, on the Consumer
Details Page, the user is presented with a list of commands currently associated to the selected
consumer.

 Page 37 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

The user may select a specific command and perform several actions associated to it:

• Create a copy of an existing command using the selected command as a template by
clicking on the “Copy” button. This will add a new command that inherits the same
configuration as the selected command to the consumer. The consumer can then be
instructed when to execute this new command.

• Delete the selected command by clicking on the “Delete” button.
• View and modify all of the other configurable components used by the command by

clicking on the “Edit Components” button. When this button is clicked, the user will be
taken to the Command Details Page (see below). On the Command Details Page
the user can configure components used by the selected command which are required in
order for the command to successfully execute the business logic it is implementing.

The Scheduled Application Details Page
When a user selects a specific scheduled application on the Application Details Page (and
on other pages) and chooses to edit that scheduled application, they will be taken to this page. The
Scheduled Application Details Page provides an interface for modifying core pieces of
information related to a scheduled application. This information is used to control how the
scheduled application behaves, i.e., how it executes the business logic assigned to it via
Commands.

If the selected scheduled application is an instance of the Test Suite application (see below), a link
will be visible that can be used to view the results of previous test suite runs. [TODO – This needs
to be re-positioned up to the Application Details Page discussion.]

 Page 38 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

Below is a list of all items displayed on this screen and a description regarding how those items
affect the behavior of the scheduled application:

• Name: a name given to this scheduled application for identification purposes.
• Type: the type of scheduled application. There are currently three types of scheduled

applications:
a. Application – is a type of scheduled application that will start, execute the business

logic associated to it (via Commands) and exit. This is a fairly typical type of
application used many times for batch processing. e.g., it’s a “one-time” run of the
application.

b. Daemon – is a type of scheduled application that starts and then executes the business
logic on a given schedule (time interval or specific days and times of day). This
business logic is executed each time the schedule is met. So, for example, if an
organization wants an application that polls a database for changes every 30 seconds
they would use a “daemon” scheduled application with a Schedule Check Interval of
30000. This would instruct the scheduled application foundation to execute the
business logic (the Command) every 30 seconds.

 Page 39 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

c. Triggered – is a type of scheduled application that starts, executes the business logic
and then waits to be triggered to exit. This is useful for applications where the user
only wants the business logic to execute once and wait to exit.

• Schedule Check Interval: This value tells the scheduled application foundation how often to
check to see if the business logic should be executed. This is especially useful for “daemon”
type scheduled applications where the user wants the business logic to be executed on a given
interval. i.e., no complex schedule needs to be associated to the business logic. This is one of
the most typical methods of specifying how often business logic should be executed.

• Thread Pool tab. Just like consumers, scheduled applications execute their business logic

(commands) in threads. This is the thread pool in which that business logic will be executed
when the schedule is met. The configuration of this thread pool is exactly the same as for
consumers listed above.

• Schedule Tab. The scheduled application foundation uses these schedules to determine

when business logic should be invoked. As mentioned above, the most common type of
schedule is configured via the Schedule Check Interval. However, Schedules can be used to
allow more flexibility in specifying when business logic should be executed. This version of the
console does not support this advanced feature but it will in the future. The user can perform
the following actions on the list of schedules associated to the selected scheduled application:

a. Select a schedule from the list and click on the Edit… button to be taken to the
Schedule Details page (see below) where they can specify additional configuration
information for the schedule. Double clicking on a schedule will also navigate the user
to the Schedule Details Page.

b. Delete a schedule from the list by selecting the schedule and clicking on the Delete
button.

c. Copy an existing schedule by selecting a schedule and clicking on the Copy… button.
This will create a copy of the selected schedule and take the user to the Schedule
Details page where the user can modify information about the new schedule that was
just copied.

 Page 40 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

The Schedule Details Page
The Schedule Details Page allows the user to specify information relating to the configuration of the
Schedule associated to the selected Scheduled Application. Schedules are used to control when
business logic is executed using the OpenEAI Scheduled Application foundation. When a
Schedule is “met” all commands associated to that Schedule are executed. So, if a Schedule is set
for Monday, Wednesday and Friday at 1pm all Commands associated to that schedule will be
executed and their business logic performed. As mentioned above, this advanced feature of
Schedule configuration is not included in this release of the Console but it will be in the future. So,
this page exists to allow that future enhancement as well as to provide the list of Commands that
will be executed when the schedule is met using the less advanced scheduling mechanisms
(Schedule Check Interval).

On this page, the user is presented with some general information regarding the selected schedule.
They may change the name of the schedule (for identification purposes) and they may specify that
the schedule should execute “immediately.” Schedules that are configured to execute immediately
ignore any other scheduling configuration and simply execute the business logic associated to them
(the Commands).

The user is also presented with a list of all Commands associated to the schedule and they may
perform the same type of functions on these commands as they can on the Consumer Details page
mentioned above. Most often, the goal will be to edit the command in some way to control what
components are available to that command at runtime when it is performing the business logic
associated to it (see below).

 Page 41 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

 Page 42 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

The Command Details Page
When the user selects a command on the Consumer Details Page or on the Schedule
Details Page and clicks the “Edit” button, they are taken to the Command Details Page. This
page provides the ability to modify and save command-specific configuration information. It also
lists all lower-level components related to the selected command. This includes Producers, Thread
Pools, Database Pools, Properties, Mail Services, Message Objects, etc. These are components
that the command uses when executing the business logic associated to it. The number and type
of components required depend solely on the business logic being executed by the command (i.e.,
the requirements that are implemented by the command).

The user can select any of these components related to the command and view or modify the
configuration related to that component. For each list of components associated to a command,
there will be an opportunity for the user to select that component and modify details specifically for
that type of component. These components are the items used by the command when executing
the business logic associated to the command. For example, if the command is passed a
BasicPerson-Create-Sync message it might populate a BasicPerson Java object and store that
person information in a database. In this example, the command would have a BasicPerson Java

 Page 43 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

object associated to it as well as a database connection pool that it uses to insert the record into the
database.

On the Command Details Page, the user is presented with a tab set that that lists all the
components associated to the command. When the user clicks on a particular tab, the related
details are shown that allows the user to configure information specifically related to the
component. The user can then make changes, additions, and deletions for that particular item and
save it back to the configuration for the command being maintained.

When changes are made to any of the components used by the command, the “Save Changes”
button will save the changes back to the configuration document associated to the selected
application.

The components the user can manage via the Command Details Page include:

Properties

When the user clicks on the “Properties” tab, a list of existing properties associated to the selected
command is shown. The items shown in the list are really categories of properties. It is often
useful to categorize properties to make the configuration and development of an application more
meaningful. By providing a “container” that is named along with a group of name/value pairs within
that container, the developer can retrieve sets of properties by name for use in the application.

The user may perform the following actions on the list of property categories:

• Select a property category and view its properties by clicking the “Details” button.
Then, the user can make changes to the content of the properties object (i.e., change
property names and/or values, add new name/value pairs to the properties object, delete
existing name/value pairs).

• Add a new named property category and then add name/value pairs to that category
by clicking the “Add…” button below the list of property categories. This will create a new
category of properties that can be filled with whatever name/value pairs that is appropriate
for the application/command being developed. The properties that are required, will vary
based on the design/implementation of the command being developed.

 Page 44 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

• Select a property category and delete that object along with all the name/value pairs
associated to it. When you do this, it removes the category of properties from the list of
available property categories available to the command. If the command refers to the
category that you delete, it may have errors at runtime so deleting property categories
should be done in coordination with the development of the application/command.

• Select a property category and copy it to a new name. This is basically the same as
creating a new category of properties except that by doing this, existing name/value pairs
get copied over from the selected property category and is one way in which the command
may retrieve the property category from its AppConfig.

• Lookup property categories by clicking on the “Lookup” button. When the user clicks on
the “Lookup…” button, they will be taken to the Lookup Component page. The user can
then select from the dropdown list of property categories used by other applications to
either Copy or Edit.

 Page 45 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

Producers

When the user clicks on the “Producers” tab, a list of existing producers associated to the selected
command is shown. Producers are used by commands to publish synchronization messages to
topics or send requests to queues. Producers are OpenEAI-based components that are used to
transport the XML enterprise messages to an end point. A command may have as many producers
as it needs to execute its business logic. Producers are configured very similar to consumers since
they are also basic JMS foundation components.

The user may perform the following actions on the list of producers:

• Select a producer and view/modify its details by clicking the “Details” button. Then,
they can make changes to the configuration of the producer object (i.e., change the
destination, etc.).

• Add a new named producer and then configure it appropriately.
• Select a producer and delete it. When you do this, it removes the producer from the list

of available producers available to the command. If the command refers to the producer
that you delete, it may have errors at runtime so deleting producers should be done in
coordination with the development of the application/command.

• Select a producer and copy it to a new name. This is basically the same as creating a
new producer except that by doing this, existing configuration information gets copied over
from the selected producer. It is often the case that much of the configuration information
associated to a producer is the same with the exception of the destination name so this can
be a valuable time saver.

• Lookup producers by clicking on the “Lookup” button. When the user clicks on the
“Lookup…” button, they will be taken to the Lookup Component page. The user can

 Page 46 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

then select from the dropdown list of producers used by other applications to either Copy or
Edit.

The following information may be specified for a producer on the Producers->General
Information sub-tab:

• Name: This is the name by which the command will likely retrieve the producer. Each

producer listed in this list will be loaded into the Command’s AppConfig object and may
be retrieved by the command at runtime when appropriate.

• Object Class: Specifies the type of producer that should be instantiated when the
application/command is started. This should be the fully-qualified class name of object.
Currently, this should only be one of the following classes:
org.openeai.jms.consumer.PointToPointProducer for point-to-point
(request/reply) message production and
org.openeai.jms.consumer.PubSubProducer for publish/subscribe
(synchronization) message production.

• Temporary Queue Pool Size: Indicates the number of temporary queues that should be
established for the producer when it initializes itself (i.e., when it starts). The default for this
is 5 and it is a technique used by the OpenEAI Producer foundation that reduces the cost of
sending a message, much like database connection pools reduce the cost of connecting to
a database. The temporary queues are established when the producer is first started so
they don’t have to be created when a message is actually produced.

• Number of Producers: Indicates the number of Producers that should be created. If this
number is greater than one (1), it would indicate that the developer of the application
intends to use an OpenEAI Producer Pool component which again provides a mechanism
to reduce the cost of sending messages and potentially increases the overall volume that
can be performed by the application.

• Start on Initialization (true or false): This tells the producer how it is to behave when it
configures itself. Generally, this will be true indicating that the producer should not only
configure itself but it should actually establish a connection to the broker which means it’s
ready to produce messages whenever it’s needed.

 Page 47 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

• Transacted (true or false): This specifies whether the JMS session sending these
messages is to be transacted or not (i.e., require a commit before it can actually be
consumed).

• Use Producer Pool (true or false): TODO
• Enable Logging Producer (true or false): Indicates whether or not a PubSub Logging

Producer should be used when this producer publishes messages (in the case of
PubSubProducers).

• Delivery Mode: TODO

 Page 48 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

The following information may be specified for a producer on the Producers->JNDI Settings sub-
tab (this information tells the producer how to connect to the JMS provider):

• Connection Factory: This specifies the lookup name for the JMS connection factory that
will be used by this producer. This can be either a TopicConnectionFactory or a,
QueueConnectionFactory depending on the type of producer being configured. A JMS
connection factory contains JMS provider-specific information about how to connect to the
JMS provider. Connection factories are “administered objects” and are stored in a directory
server or other store whose location is specified in “Provider URL” (see below). By using
connection factories and JNDI, the connection behavior for a producer is not vendor
specific which will allow an organization to switch JMS providers relatively easily.

• Destination: This is the name of the JMS queue or topic to which this producer will send
messages. This is also an “administered object” stored in the server or other JNDI store
whose location is specified in “Provider URL” (see below).

• Initial Context Factory: This is the fully-qualified name of the class the producer will use
to obtain an initial context with the directory server or JNDI store where the administered
objects reside. When an organization uses an LDAP repository to store JMS administered
objects, this will almost always be com.sun.jndi.ldap.LdapCtxFactory. This class
name will be based on the repository being used to store JMS administered objects.

• Provider URL: This is the location in the directory server or other JNDI store where the
factories and destinations (JMS administered objects) reside. Examples include:
rmi://localhost:1099/JndiServer and
ldaps://localhost:636/ou=PointToPoint,ou=Dev,ou=AdministeredObject

• Security Principal: This is the directory server user that will be used to lookup the
ConnectionFactory and Destination if those administered objects are in fact stored in a
directory server.

• Security Credentials: This is the password associated to the directory server that will be
used to lookup the ConnectionFactory and Destination if those administered objects are in
fact stored in a directory server.

• Lookup Initial Context factory: When the user clicks on the “Lookup…” link, they will be
taken to the Lookup Property page. The user can then select from the dropdown list
of InitialContextFactory values used by other applications. The user may select a value that
they would like to apply to this Producer and click on the Apply Changes button to apply the
changes.

• Lookup Provider URL: When the user clicks on the “Lookup…” link, they will be taken to
the Lookup Property page. The user can then select from the dropdown list of

 Page 49 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

ProviderUrl values used by other applications. The user may select a value that they would
like to apply to this Producer and click on the Apply Changes button to apply the changes.

Message Objects

When the user clicks on the “Message Objects” tab, a list of existing message objects associated to
the selected command is shown.

Message objects are the enterprise data, or business objects, used or acted on by an application or
command. These are OpenEAI-based Java business objects that correspond to objects defined
during integration analysis. These objects are retrieved at runtime and populated with data before
performing some action on the object (such as create, delete, or update). Likewise, these objects
are populated when a consumer consumes a message and hands that message off to a command
for execution. The command often takes the XML message and uses it to populate a message
object or objects before calling database procedures or something else that will ultimately persist
the data contained within the object. So, in a command, message objects are used extensively,
and depending on the business logic being executed by the command, the list of message objects
will vary (i.e., it will only be configured to use the objects it needs to perform the business logic at
hand).

The user may perform the following actions on the list of message objects associated to the
command:

• Select a message object and view/modify its details by clicking the “Details” button.
Then, the user can make changes to the configuration of the message object (i.e., modify
the information mentioned above).

• Add a new named message object and then configure it appropriately.

 Page 50 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

• Select a message object and delete it. When you do this, it removes the message object
from the list of available message objects available to the command. If the command
refers to the message object that you delete, it may have errors at runtime so deleting
message objects should be done in coordination with the development of the
application/command.

• Select a message object and copy it to a new name. This is basically the same as
creating a message object, however doing it this way permits existing configuration
information to be copied from the selected message object. It is often the case that much
of the configuration information associated to related message objects is the same with the
exception of the name, object class, and primed documents, so this can be a valuable time
saver.

The following information may be specified for a selected message object on the Message
Objects->General Info sub-tab:

• Name: The name of the object as it will be known by the application’s or command’s
AppConfig object. This is one way in which the application or command can retrieve the
object from AppConfig. A good naming convention is: Name.version. For example:
BasicPerson.v1_0. By following a naming convention similar to this, the application can
use some of the meta-data information contained in the message consumed to derive a
name and will not have to “hard code” references to named objects.

• Object Class: The full class name of the object that will be instantiated. For example:
com.foo.moa.jmsobjects.person.v1_0.BasicPerson. These are objects
generated by the Message Object Generation application, so these class names will vary
by organization.

• Sender App ID: This value is used when a message is produced by the message object.
It indicates the name of the application sending the message and is used by various
infrastructure components (such as Request Proxy and Logging Service). Naming
conventions should be adopted and followed consistently. For example, many
organizations use reverse domain name conventions for application names as well, so an
example might look like this: com.foo.hrapps.SelfServiceApplication.

• XML Validation (true or false): If set to true, this will force XML validation at runtime.
When an object, like BasicPerson is populated and then an action, like create is invoked,
an XML message is built by the underlying OpenEAI foundation. In this example, a
BasicPerson-Create-Request XML message is built. If XML validation is true, this
message will be validated from an XML perspective when that create action is invoked.

 Page 51 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

This means, the underlying foundation will use the XML parser to ensure that the structure
of that message matches the definition specified by the constraint (DTD or Schema)
referenced by the document. Generally, this should always be set to false in a production
environment because XML validation does impose additional resource requirements and
could contribute to poor application performance. Ideally, by the time an application gets
deployed in a production environment, there should be very little chance that the resulting
XML document will be invalid from an XML perspective.

• Command Name: Is a property associated to the JMS message that is sent on behalf of
this message object when one of the OpenEAI actions are performed (Query, Create,
Update, Delete etc.). If specified, this value will be used and the consumer of the message
will use this command name property to determine which command to execute.

 Page 52 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

The following information may be specified on the Message Objects->Enterprise Object
Definition sub-tab. Enterprise Object Documents (EO docs) are used by the message objects
for a variety of purposes. They provide general formatting rules (such as length, data types and
whether or not a field is required) as well as translations and the ability to “scrub” data being stored
in an enterprise object. Every message object that is used by an application (i.e., every object that
can be added here) must reference an EO document that describes these rules. The EO docs
themselves are also generated by the Message Object Generation application when it generates
the Java objects. Once an EO document is generated, analysis dictates the additional information
that must be specified in the document. EO documents provide a mechanism to apply enterprise
data rules on business objects that goes far beyond the capabilities of XML DTD or Schema which
as mentioned above are primarily concerned with structure validation. They provide a mechanism
for applying very specific rules to the data that is being put into these business objects.

o Document URI: The URI of the EO document that will be used by this object.
Currently this should be the fully qualified path to the EO document, however in
future releases of the Console, much of this will be handled automatically.

o Ignore Missing Fields (true or false): N/A.
o Ignore Validation (true of false): When this value is “true” (checked), no

formatting, translations, or scrubbing will be performed on the data as it is being put
into the business objects via its setter methods. This is completely different from
XML validation as it applies to the data being put into the object as opposed to the
structure of the XML document that is a result of the object being used in a
message that is sent.

 Page 53 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

The following information may be specified on the Message Objects->Supported Actions sub-
tab:

• Primed Documents: Primed documents are used by the message object when an action
is performed on the object such as create, update, or delete. When the action method
is invoked the object uses the data that currently resides within it and places that data into
the appropriate XML document. The XML document is then transported to a destination via
a JMS Queue or Topic.

Primed documents are used as the templates for these documents. They are generally the
result of the analysis process employed to determine which message objects need to exist
and which applications and/or gateways will need to be developed. The OpenEAI Message
Object API foundation uses the primed documents as templates so it doesn’t have to build
these documents from scratch each time. This results in a significant performance boost
because the primed documents are loaded into memory during initialization and the
application just modifies the document appropriately at runtime (i.e., it replaces the
DataArea with the content of the object and sets some ControlArea elements to the
appropriate values).

When the user “selects” the actions that will be “performed or supported” by this command
on the selected message object, the Console will pre-fill the primed document information
associated to that selected action.

• Layout Managers: XmlLayout is the only layout manager being supported this release.

 Page 54 of 93

http://www.openeai.org/site/public.live?document=ApiDocumentation.xml&focus=N3010
http://www.openeai.org/site/public.live?document=ApiDocumentation.xml&focus=N3010

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

Thread Pools

When the user clicks on the “Thread Pools” tab, a list of existing thread pool objects associated to
the selected command is shown. Thread pools are used by applications to increase the processing
capacity of the application while providing the ability to control how many threads the application
has at its disposal (similar to database connection pools, below). Since commands can be
considered applications in themselves, they often use thread pools as well.

The user may perform the following actions on the list of thread pools associated to the command:

• Select a thread pool and view/modify its details by clicking the “Details” button. The
user can then make changes to the configuration of the thread pool (i.e., change the
maximum pool size, etc.).

• Add a new named thread pool and configure it appropriately.
• Select a thread pool and delete it. When you do this, it removes the thread pool from the

list of available thread pools available to the command. If the command refers to the thread
pool that you delete, it may have errors at runtime so deleting thread pools should be done
in coordination with the development of the application/command.

• Select a thread pool and copy it to a new name. This is basically the same as creating a
thread pool, however doing it this way permits existing configuration information to be
copied from the selected thread pool.

• Lookup Thread Pools by clicking on the “Lookup” button. When the user clicks on the
“Lookup…” button, they will be taken to the Lookup Component page. The user can
then select from the dropdown list of Thread Pools used by other applications to either
Copy or Edit.

The following information may be specified for a thread pool:

 Page 55 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

• Name: This is the name of the thread pool and is one way in which the command may

retrieve it from its AppConfig.
• Maximum Threads: This is the maximum number of threads that will ever be in progress

at the same time.
• Minimum Threads: The minimum number of threads that will be allocated to the thread

pool.
• Check Before Processing (true or false): Checking this check box (true) gives the

command the opportunity to make sure there is at least one available slot in the thread pool
before adding another process execution to the pool.

Database Pools

When the user clicks on the “Database Pools” tab, a list of existing database pool objects
associated to the selected command is shown. Database connection pools are used in many Java
applications to control the number of connections an application makes to a database. Additionally,
they are used to reduce or eliminate the need for developers to establish connections to the
database when, for example, an insert is to be performed. Instead, by using a database connection
pool, the developer has pre-established database connections that are ready to use and the costly
overhead associated to establishing a connection is avoided.

The user may perform the following actions on the list of database connection pools associated to
the command:

 Page 56 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

• Select a pool and view/modify its details by clicking the “Details” button. The user can
then make changes to the configuration of the pool (i.e., change the maximum pool size).

• Add a new named pool and then configure it appropriately.
• Select a pool and delete it. When you do this, it removes the database pool from the list

of available pools available to the command. If the command refers to the database pool
that you delete, it may have errors at runtime so deleting database pools should be done in
coordination with the development of the application/command.

• Select a pool and copy it using a new name. This is basically the same as creating a
database connection pool from scratch, except that by doing this, existing configuration
information is copied over from the selected database connection pool.

• Lookup Database Pools by clicking on the “Lookup” button. When the user clicks on the
“Lookup…” button, they will be taken to the Lookup Property page. The user can then
select from the dropdown list of Database Pools used by other applications to either Copy
or Edit.

• Lookup Object Class by clicking on the “Lookup” link next to the Object Class text box.
When the user clicks on the “Lookup…” button, they will be taken to the Lookup
Property page. The user can then select from the dropdown list of ObjectClass values
used by other applications. The user may select a value that they would like to apply to this
Database Pool and click on the Apply Changes button to apply the changes.

• Lookup Connection verification String by clicking on the “Lookup” link next to the
Connection Verification String text box. When the user clicks on the “Lookup…” button,
they will be taken to the Lookup Property page. The user can then select from the
dropdown list of Verification String values used by other applications. The user may select
a value that they would like to apply to this Database Pool and click on the Apply Changes
button to apply the changes.

The following information may be specified for a database connection pool on the Database
Pools->General Info sub-tab:

• Pool Name: The name of the pool. This is the name by which applications may retrieve

the pool from the AppConfig object associated to the application or command.
• Initial Pool Size: Integer value specifying the number of connections to allocate to the

pool initially.
• Maximum Pool Size: If specified, this is the maximum number of connections to allocate

to the pool. In this case, the pool will only create additional connections if needed until this

 Page 57 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

maximum number is reached. If it is not specified and additional connections are needed,
the pool will create those connections indiscriminately.

• Object Class: The fully-qualified class name of the connection pool to instantiate. For
example, if an organization is using the OpenEAI database connection pool, this value
would be org.openeai.dbpool.EnterpriseConnectionPool.

• Verification String: A string used to externalize the verification of database connections
as they are retrieved from the pool to ensure that a reliable connection is being returned.
There have been cases where not all JDBC implementations support the isClosed()
method specified by the JDBC specification. So, this is not always a reliable way to
determine if a connection is “good.” Users can use this string to provide a simple and
efficient alternative to the isClosed() method to verify connection status. Note: having
a “simple” and “efficient” alternative is essential here because if a verification string is
specified, the pool will attempt to execute that statement each time a connection is returned
from the pool to verify its status.

The following information may be specified for the Database Connection pool on the Database
Pools->JDBC Settings sub-tab:

• Driver Name: The name of the JDBC implementation to use for the connections in this
pool. For example: oracle.jdbc.driver.OracleDriver.

• Connect String: The name of the target database to which the connections in this pool
should connect. For example: jdbc:oracle:thin:@localhost:1521:DB_NAME.
This will be a provider-specific value.

• User Name: The name of the user used to connect to the database.
• Password: The password associated to the user.
• Lookup Driver Name by clicking on the “Lookup” link next to the Driver Name text box.

When the user clicks on the “Lookup…” button, they will be taken to the Lookup
Property page. The user can then select from the dropdown list of Driver Name values
used by other applications. The user may select a value that they would like to apply to this
Database Pool and click on the Apply Changes button to apply the changes.

• Lookup Connect String by clicking on the “Lookup” link next to the Connect String text
box. When the user clicks on the “Lookup…” button, they will be taken to the Lookup
Property page. The user can then select from the dropdown list of Connect String
values used by other applications. The user may select a value that they would like to
apply to this Database Pool and click on the Apply Changes button to apply the changes.

 Page 58 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

Mail Services

When the user clicks on the “Mail Services” tab a list of existing mail service objects associated to
the selected command is shown. A mail service is an OpenEAI-based component used by an
application to send e-mail messages using a simple SMTP protocol. This object is made available
to the application at runtime and can be retrieved by name in the same way as other components.
By configuring the mail service at application initialization the developer does not have to do any
additional coding in order to use the mail service, rather simply retrieve it just as any other
configurable OpenEAI object.

The user may perform the following actions on the list of mail service objects associated to the
command:

• Select a mail service object and view/modify its details by clicking the “Details” button.
The user can then make changes to the configuration of the object (i.e., change the mail
host, etc.).

• Add a new named mail service object and then configure it appropriately.
• Select a mail service object and delete it. When you do this, it removes the mail service

from the list of available mail services available to the command. If the command refers to
the mail service that you delete, it may have errors at runtime so deleting mail services
should be done in coordination with the development of the application/command.

• Select a mail service object and copy it using a new name. This is basically the same
as creating a mail service object from scratch, except that by doing this, existing
configuration information is copied over from the selected object.

• Lookup mail services by clicking on the “Lookup” button. When the user clicks on the
“Lookup…” button, they will be taken to the Lookup Component page. The user can
then select from the dropdown list of mail service used by other applications to either Copy
or Edit.

• Lookup Mail Host by clicking on the “Lookup” link next to the Mail Host text box. When
the user clicks on the “Lookup…” link, they will be taken to the Lookup Property page.
The user can then select from the dropdown list of Mail Host values used by other
applications. The user may select a value that they would like to apply to this Mail Service
and click on the Apply Changes button to apply the changes.

 Page 59 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

• Lookup Recipient List by clicking on the “Lookup” link next to the Recipient List text box.

When the user clicks on the “Lookup…” link, they will be taken to the Lookup Property
page. The user can then select from the dropdown list of Recipient List values used by
other applications. The user may select a value that they would like to apply to this Mail
Service and click on the Apply Changes button to apply the changes. [MJ - 10/25/07]

The following information may be specified for a mail service object:

• Name: The name of the Mail Service as it will be known by the AppConfig associated to
the application or command. This is one of the ways that the developer of the
application/command may choose to retrieve the object from AppConfig.

• From Address: The e-mail address of the sending application. This can be overridden at
runtime if needed. This provides the administrator/developer the ability to specify the
address here so the application does not have to supply it.

• Mail Host: The SMTP host that will be used to send the e-mail message.
• Recipient List: Comma separated list of recipient e-mail addresses to which a message

will be sent.

 Page 60 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

The Routing Service

As indicated in the Router Overview figure below, all sync publishing applications (i.e., all
authoritative systems) send their messages to the Router’s topic. Then, the router determines
where those message needs to be delivered. It does this first by checking to see what targets, if
any, are interested in the message object included in the message that is delivered to it. It looks at
the message object and message action associated to the message for this first check.
Additionally, more complex routing criteria can be specified. These can be very complex Java
implementations, which may be target-specific. These components can look at the content of the
message, data in other system or a variety of other criteria to determine if the target is really
interested in the message. Future releases of the console will allow the user to maintain this
information as well as the more “simple” criteria.

 Page 61 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

The Routing Service Page

This page will present the user with an interface to administer the Routing Service. The Router is
an OpenEAI-based gateway that routes messages from one system to other targets, based on
criteria appropriate for that target. The Router is “middleware” that centralizes this core EAI
function. It is really just an OpenEAI-based gateway that serves a very specific purpose.
Therefore, much of the Router configuration is similar to any general gateway. However, because
of the specific purpose of the Router and the complexity associated with its configuration and
maintenance, the Console provides some specific features related to Router configuration.

After the user logs into the application, they can select the “Routing Service” tab from the main
navigation bar at the top of the page. This will take them to the Routing Service Page. On the

 Page 62 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

Routing Service Page, the user is presented with the high-level configuration information
associated to the Router. The Router is configured via an entry in the t_app_config table in the
database. This is the entry that is being manipulated via the Console. It is typically not necessary
to modify this entry manually (i.e., outside of the console).

On the Routing Service Page, the user is presented with several pieces of information
regarding the Router. These include:

• The status of the Router (Running or Stopped).
• The description associated to the Router which the user may change.
• The amount of time the Router has been running (if it’s running)
• The last time the router was running
• The last time the router was modified
• Last user associated with modfiying the router
• Configuration revision

In addition, other “gateway specific” functions are available. The user has the ability to perform the
following functions related to the Router on the Router Page:

• Start the Router by clicking on the “Start” button. When you start the router via the
console, it will initiate a new native process to run it in. Because of this, it is important to
remember that when you start the router from within the console, you should always stop it
using the console (when it needs to be stopped that is). The router is designed so that
hopefully it should rarely need to be stopped but when it is necessary to stop it, remember
to stop it via the console. This will prevent “orphan” processes that will remain running
even when/if the console is closed or even if the application server is stopped. This
behavior may vary based on the operating system being used but in general, any
gateway/application that is started via the console should also be stopped via the console.
If for some reason you forget to stop a gateway/application via the console, you can also
look for the specific java process that was initiated and kill it manually but that is generally
not recommended unless it’s necessary. Refer to what happens when an application or
gateway is started section of this document for more information.

• Stop the Router by clicking on the “Stop” button. This will terminate the process
associated to the Router.

• Save any changes made to the configuration of the Router (for example, the
description that can be changed on the Router’s main page). Then, when the Router is
restarted, it will use the new settings.

• View the consumers associated to the Router. Remember, router is just an OpenEAI
based gateway that performs some very specific EAI “infrastructure” related functions.
Therefore, at the most fundamental level, it behaves just like any other gateway (i.e. – it
consists of consumers that execute commands when a message is delivered to the topic
it’s connected to).

• View one of several canned reports that provide information related to the processing
that has been performed by the Router at a given point in time. [TODO add more info and
screen shots related to the Router reports]

• View and configure the log associated to the router.
• Deployment Status - ?
• Revision History

 Page 63 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

o The user is taken to a page that displays a table of the complete revision history for
the selected application. This is useful for keeping track of who makes changes to
the applications managed by this instance of the ESB.

• View/Edit runtime environment configuration
o The JVM Process Properties page should open. Everything should be blank

except for the Process Identifier and Console Identifier text fields. Those fields
should be disabled.

• View most recently used runtime environment
o The Recently Used Runtime Environment page should open. There should be six

categories of runtime information displayed:
 JVM Arguments
 Application Id
 Application Runner
 Java Home
 Classpath
 Config element file spec

o All items should be collapsed initially.
• Search and Replace in this Application

o Opens the Search and Replace page. Use this interface to perform mass "search
and replaces" in the configurations of applications being managed by this ESB.

o IMPORTANT: This action should be performed with extreme caution
• Export/Edit application’s XML Configuration

o The Export/Edit Application Configuration page should open. The text area in the
middle of the page should be populated with XML content that is the configuration
for this application.

o Warning: Changes made on this screen should be made with caution. Click the
Edit button to manually edit this application's configuration. Click the Save button
to save the changes made to the configuration.

 Page 64 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

• Routing Service - Consumers Tab

When the user selects the Consumers tab, a list of consumers associated to the Router is
presented. A consumer used by the Router is the same as any other PubSubConsumer used by
any other OpenEAI-based gateway, it connects to a JMS Topic and executes business logic when
a synchronization message is delivered to that topic. This particular consumer executes the
Router’s command, which implements the business logic associated to the Router (namely, routing
messages to one or more targets). Once the user has selected a consumer from the list, they may
perform the following actions on that consumer:

• Edit the consumer’s configuration by clicking on the “Edit” button. When the user clicks

on the “Edit” button, they will be taken to the Consumer Details Page (see the section
titled “The Consumer Details Page”) where they can change specific information related to
the consumer itself. [TODO – add more information about the detailed configuration
of the Router’s consumer]

• View the targets associated to the Router’s consumer(s) by selecting a consumer and
clicking on the “View Targets” button. This will take the user to the Router Targets
Page where the user will be presented with a list of targets (i.e. – end points) currently
being routed to by the Routing Service. This is a list of other applications in the enterprise
that are “interested” in messages being published by some authoritative source and being
routed by the Router. See next section, titled “The Router Targets Page”, for more
information. When the Router consumes a message, it will consult this list to determine
where to route the message consumed. Router does this by using other OpenEAI
foundation components called PubSubProducers to re-publish the synchronization
message to the appropriate targets.

 Page 65 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

Routing Service – Reports Tab
When the user selects the Reports tab…

The Router Targets Page

 Page 66 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

The Router Targets Page is where the user manages the targets being routed to by the
selected consumer (the consumer that was selected on the Routing Service page). This page
shows a list of all targets currently being routed to by the selected consumer. Remember, each
consumer in a gateway executes commands, and the Router’s command simply routes messages
from authoritative systems to non-authoritative systems. Since organizations may find it necessary
to have multiple consumers configured for the Router, they must first select the consumer they want
to maintain.

The first item of interest on this page is the list of existing targets being routed to. This is a list of
existing sync consuming gateways that need to have certain types of messages delivered to them.
The user may perform the following activities related to targets:

• View general information about a target by selecting a target and clicking the “Details…”
button (or double clicking the desired target). Clicking the details button fills in the Target
ID and Description fields appropriately. The user may modify the description of the target if
they wish. Also, the general routing properties will be populated according to the current
configuration associated to the target. These general routing properties include:

o Route to Target (true or false): If “true” (checked) the Router will route to this
target. If “false” (unchecked) the Router will not route any messages to the
selected target but the target will still be available to the Router.

o Provide Target App Name (true or false): If “true” (checked) Router will fill out
the TargetInfo section of the ControlArea in the message it routes to the end-
point (the target). This information is useful to other infrastructure applications like
the Logging Service. It is used to correlate messages to their intended targets.

o Provide Source Control Area (true or false): If “true” (checked) the Router will
add the ControlArea element from the original message to the SourceInfo
element in the ControlArea of the message being sent to the end-point (the
target). This can be useful if the application needs to know things about the
original publisher of this message (the place where the message originated).

o Dump Output (true or false): If “true” (checked) the Router will write the content
of the message it forwards to the file system. This is useful during development
and testing to know exactly what message is being routed. By using this in
combination with some of the other command options (such as the writeToFile
attribute associated to a command) organizations can compare the message
consumed by the Router to the message it forwards to the target. Router will use
the MessageDumpDirectory associated to its command as the base for this
directory. It will write these files to “[MessageDumpDirectory]/output”.

• Create a new target by clicking on the “New…” button. This will take the user to the Add
Target Page (see below) where the user can select from available sync consuming
gateways that are not already being routed to and add them if appropriate. When these
targets are added, Router is given the required PubSubProducer it needs to re-publish, or
route the message to the target.

• Delete the selected target by clicking on the “Delete” button. The next time the Router is
restarted, it will no longer route to that target.

• Save any changes made to the target ID, description, or general routing properties
associated to the selected target(s) by clicking on the “Save” button.

• Edit the routing criteria associated to the selected target by clicking on the “Edit criteria
for selected target” button. This will take the user to the Select Routing Criteria
Page where the user can select the appropriate message object/action combinations that

 Page 67 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

the Router will use to determine if a particular message should be routed to the selected
target. See the section titled “The Select Routing Criteria Page” for more information.

TODO: Routing criteria/rules that can be “plugged in”

The Add Router Target Page

The Add Router Target Page allows the user to add a new target that should be routed to by
the Router. When the user clicks on the “New…” button on the Router Targets Page, they will
be taken here and presented with a list of potential targets. This list is built from existing
configuration information associated to the gateways in an organization (i.e., an entry in the
t_app_config table in the database that is manipulated via the Console).

The Console examines the configuration associated to each sync consuming gateway and
determines if that gateway is a suitable target. If so, it is listed here. The potential target’s
application ID and description is presented so the user knows for which application they are

 Page 68 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

looking. Once the desired application is found in the list, the user clicks the “Add Target…” to add
that target. This will take the user to the Select Routing Criteria Page where the user can
choose the message object/action combinations to be routed to the selected target.

TODO: mention that the list of apps being displayed may include multiple consumers so you
have to choose the appropriate one that you really want router to route the message to.

 Page 69 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

The Select Routing Criteria Page

The Select Routing Criteria Page is where the user tells the Router which message
objects it should route to the selected target (whether it is a new target or an existing target). This
is the first set of criteria used by the Router when it determines if a message should be routed to a
target or not. It looks at the incoming message object along with the action associated to it and
uses that information to determine if a given target should receive that message. There are also
other more complex routing criteria that may be specified that will be maintainable in future releases
of the console.

The user is presented with a list of available objects in which the selected target is interested,
based on the configuration of that target (i.e., the sync consuming gateway). The console looks at
the configuration for that gateway and determines which actionable message objects are of interest.
The console then builds the list of message objects. The user can then select the appropriate
actions to route by clicking the “Get Actions…” button associated to the message object from the
list. They can then select the appropriate actions that they want to allow through by checking or un-
checking the checkboxes next to the list of actions associated to the selected message object.

Note: at this time the target gateway must be configured with all the message objects in which it is
interested. So, this means before a gateway can be added as a target, it must be first configured
with the message objects it will need. The appropriate message object/action combinations can
then be selected on this screen. In other words, if the message object is not already associated to
the target gateway, it will not be listed as an object that can be selected on this page. However, if

 Page 70 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

the consuming gateway does not currently have the selected message object/action combination in
its configuration, the Console will automatically add it so there will be no need to update the target’s
configuration for this.

Once the appropriate routing criteria have been established, the user may click the “Save” button
and the configuration document for the Router will be updated accordingly. The next time the
Router is restarted, it will start routing to the selected target based on the rules specified here.

TODO: Finish Button

 Page 71 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

The Proxy Service Page

This page will present the user with an interface to administer the Proxy service. The Proxy is an
OpenEAI-based gateway that sits between a requesting application and an authoritative source.
The Proxy determines if the requesting application is permitted to perform the action it is requesting
based on several criteria. The Proxy is a component of EAI middleware that centralizes this core
function.

The Proxy is simply an OpenEAI-based gateway that serves a very specific purpose. Therefore,
much of the Proxy configuration is very similar to that of any other gateway. However, because of
the specific purpose served by the Proxy and the complexity associated to its configuration and
maintenance, the Console provides some specific features related to Proxy configuration.

 Page 72 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

As the Proxy overview diagram below indicates, the purpose of the Proxy is to ensure that a
requesting application is allowed to perform a given action on an object. How it determines this can
be very simple or very complex. With this release, the console allows the user to choose which
actions may be performed on a given object by a given “proxied” application via the interface. This
is the first level of checking that occurs within the Proxy service. However, additional lower level
rules can also be specified and developed that are “plugged” into the Proxy. When those lower
level rules exist, the proxy not only checks to see that the requesting application has the authority to
perform the action it’s requesting on the object, but it will invoke these lower level rules as well to
make the check potentially much more complex. In future releases of the console, the user will be
able to associate these lower-level, more complex rules to the requesting application as well.

Application 1 Application 2 Application n

JMS Provider

Proxy
Queue 1

Proxy
Queue 2

Proxy
Queue n

Authoritative
Source 1
Queue

Authoritative
Source 2
Queue

Authoritative
Source n
Queue

Authoritative
Source 1

Authoritative
Source 2

Authoritative
Source n

Data 1 Data 2 Data n

Non-authoritative
applications send

Request-Reply
messages to the

Proxy

Proxy determines
if requesting

application is
allowed to

perform the
action prescribed
in the Request. If

they are, Proxy
forwards the

request to the
appropriate target

authoritative
system.

Authoritative
Systems perform

the requested
action and return

a Reply.

Proxy
Service

As indicated in the above diagram, there are JMS Queues established for each requesting
application (a.k.a., proxy queues). These queues are the only queues the requesting application
may send requests to. The Proxy consumes the request off of the queue and performs the
check(s) to see if the sending application has the authority to perform the action on the selected
object. If the application is allowed to perform the action, the request is forwarded on to the
intended target (the Proxy Target application). Then, the Proxy consumes the Reply from the target
application and returns it to the requesting application.

 Page 73 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

After the user logs into the application, the user can select the “Proxy Page” tab from the main
navigation bar across the top of the page. This will take them to the Proxy Page. On this page,
the user is presented with the high-level configuration information associated to the Proxy. The
Proxy is configured via an entry in the t_app_config table in the database. It is typically not
necessary to modify this entry manually (i.e. outside of the console).

On the Proxy Page, the user is presented with several pieces of information. These include:

• The status of the Proxy (Running or Stopped).
• The description associated with the Proxy, which the user may change.
• The amount of time the Proxy has been running (if it’s running)
• The last time the Proxy was run
• The last time the Proxy was modified
• Last user associated with modfiying the Proxy
• Configuration revision

In addition to this information, other gateway-specific functions are available. The user has the
ability to perform the following functions related to the Proxy on the Proxy Page:

• Start the Proxy by clicking on the “Start” button. When you start the proxy via the console,
it will initiate a new native process to run it in. Because of this, it is important to remember
that when you start the proxy from within the console, you should always stop it using the
console (when it needs to be stopped that is). The proxy is designed so that it should
rarely need to be stopped but when it is necessary to stop it, remember to stop it via the
console. This will prevent “orphan” processes that will remain running even when/if the
console is closed or even if the application server is stopped. This behavior may vary
based on the operating system being used but in general, any gateway/application that is
started via the console should also be stopped via the console. If for some reason you
forget to stop a gateway/application via the console, you can also look for the specific java
process that was initiated and kill it manually but that is generally not recommended unless
it’s necessary. Refer to the what happens when an application or gateway is started
section of this document for more information.

• Stop the Proxy by clicking on the “Stop” button. This will terminate the process associated
to the Proxy.

• Save any changes made to the configuration of the Proxy (the description for example that
may be changed on the Proxy’s main page). When the Proxy is restarted, it will use the
new settings.

• View the existing proxied applications associated to the Proxy by clicking on the
“Proxied Applications” tab. When the user clicks this button the “Applications currently
proxied by the Proxy” form is displayed, which lists all request sending applications that are
currently configured to send requests through the Proxy on their way to some other end
point. See the following section titled “View Proxied Apps” for more information.

• View and configure the log file associated to the proxy.
• Deployment Status - ?
• Revision History

o The user is taken to a page that displays a table of the complete revision history for
the selected application. This is useful for keeping track of who makes changes to
the applications managed by this instance of the ESB.

 Page 74 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

• View/Edit runtime environment configuration
o The JVM Process Properties page should open. Everything should be blank

except for the Process Identifier and Console Identifier text fields. Those fields
should be disabled.

• View most recently used runtime environment
o The Recently Used Runtime Environment page should open. There should be six

categories of runtime information displayed:
 JVM Arguments
 Application Id
 Application Runner
 Java Home
 Classpath
 Config element file spec

o All items should be collapsed initially.
• Search and Replace in this application

o Opens the Search and Replace page. Use this interface to perform mass "search
and replaces" in the configurations of applications being managed by this ESB.

o IMPORTANT: This action should be performed with extreme caution
• Export/Edit Application’s XML Configuration

o The Export/Edit Application Configuration page should open. The text area in the
middle of the page should be populated with XML content that is the configuration
for this application.

o Warning: Changes made on this screen should be made with caution. Click the
Edit button to manually edit this application's configuration. Click the Save button
to save the changes made to the configuration.

View Proxied Apps

When the user clicks the “Proxied Applications” tab, they will be presented with a list of applications
that are currently configured to send requests through the Proxy on their way to some other end
point. This means, the Proxy is being used to make sure the requesting application is sending only
“allowed” messages to the end point. The Console provides interfaces to aid in the administration
of the rules used to make this determination; much like the Routing Service does for PubSub
messages.

 Page 75 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

In the Proxied Applications tab, the user may perform several functions:

• Administer the proxy rules associated to a requesting application by selecting a
proxied application from the list and clicking on the “Edit…” button. This will take them to
the Proxied Application Maintenance Page, where the user can view and modify
information related to this particular proxied application, for instance, which consumers are
used by the Proxy to proxy the requests coming from the requesting application, as well as
to which targets the requesting application is allowed to send requests. See the section
titled “Proxied Application Maintenance Page” for more information.

• Create a brand new proxied application by clicking on the “New…” button. This will take
the user to the Add Proxied Application Page, where the user can select a potential
proxiable application in advance of specifying the proxy rules associated to the requesting
application that must be in place. See the section titled “Add Proxied Application Page” for
more information about this process.

• Delete the selected proxied application by clicking the “Delete” button. This will remove
that application and any consumers used by the Proxy for that application. When this is
done, the selected application will no longer be able to send ANY requests through the
proxy so this is a convenient way to “shut off” a particular application.

 Page 76 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

Add Proxied Application Page

The Add Proxied Application Page provides an interface to add a brand new requesting
application to the Proxy (i.e., a new application that will be sending requests through the Proxy to
some other end point). On this page, the user is presented with a list of applications that may be
proxied. The Console builds this list based on existing information in the organization’s general
configuration document (the Deployment Descriptor). These are applications that have
PointToPointProducers in their configuration and are performing at least one action on at least one
actionable message object.

The application ID and description of the potential requesting application is displayed to the user.
When the user clicks on the “Add…” button for an application, the user is taken to the Proxied
Application Maintenance Page to specify targets and proxy criteria/rules that will be checked
before allowing the application to send requests to the selected targets.

 Page 77 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

Proxied Application Maintenance Page

The Proxied Application Maintenance Page provides an interface for managing Proxy
information related to the selected application (i.e., control what targets the selected application
may send requests to). This page can be reached from either the Proxy Page when the user
selects an existing proxied application and clicks the “Edit…” button, or during the process of
adding a new proxied application (see Add Proxied Application Page). This page presents
the user information about the proxied application, including the application ID and description of
the selected proxied application.

The user can perform several actions on this page related to the selected proxied app:

 Page 78 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

• View/modify information about the targets to which the selected application is allowed to

send requests (see “Targets this Application can Send Requests to” below).

• View/modify information about the consumers used by the Proxy to proxy requests

coming from the proxied application. Note: most of the information about these consumers
is automatically built by the Console when a new application is added to the Proxy, so it is
not generally necessary to modify much about these consumers except the Destination
name that they are consuming from.

• View/modify Proxy “rules” that will be associated to this proxied application… TODO:

Proxy Rules Tab

 Page 79 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

• Change the application ID and description associated to a proxied application and

save it. Note: this information is also automatically derived by the Console when the
application is added to the Proxy. So, it is not generally necessary to change much about
these except to provide a more specific description that might indicate more about the
nature of the proxy rules for the selected application.

Targets this Application can Send Requests to

When the user clicks on the “Targets this Application can Send Requests to” tab, the targets to
which the selected application is allowed to send requests are listed.

On this tab, the user can perform the following actions:

• Edit the proxy rules associated to a given target for the selected app by clicking on the
“Edit…” button. This will take the user to the Select Target Proxy Criteria Page,
which allows the user to select message object/action combinations that the requesting
application will be allowed to send to the selected target. See the section titled “Select
Target Proxy Criteria Page” for more information.

• Add a brand new target that the requesting application will be able to send requests to by
clicking on the “New…” button. This will take the user to the Add New Proxy Target
Page, where they may select a target from the list of available targets before specifying
proxy rules (i.e., criteria).

• Delete the selected target by clicking on the “Delete” button. This will mean that the
requesting application will no longer be able to send ANY requests to the selected target.

 Page 80 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

Add New Proxy Target Page

When the user chooses to add a new target to the selected proxied application, they are taken to
the Add New Proxy Target Page. On this page the user can choose from a list of potential
targets that are authoritative for some data (i.e., they have PointToPointConsumers and can
process at least one actionable object). From this list, the user can select the target to which they
wish to allow the requesting app to send requests. Subsequently, they will be taken to the Select
Target Proxy Criteria Page, where they can specify the proxy criteria/rules that will be
checked by the Proxy before allowing the requesting application to send a given request to the
selected target.

This list is broken down by consumer, so if an application has multiple consumers, the user will
need to be careful to pick the correct one.

Select Target Proxy Criteria Page

 Page 81 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

The Select Target Proxy Criteria Page is where the user tells the Proxy which message
objects it should allow the requesting application to send to the selected target (whether it is a new
target or an existing target). This is the first set of criteria used by the Proxy when it determines if a
request should be allowed from a requesting application. It looks at the incoming message object
along with the action associated to it, and uses that information to determine if the requesting
application is allowed to send that particular request. Other more complex proxy criteria/rules could
be specified as well; these will be maintainable in coming releases of the Console.

The user is presented with a list of available objects for which the selected target is authoritative
based on the configuration of that target (i.e., the request-consuming gateway). The Console looks
at the configuration for that gateway and determines for which actionable message objects it is
authoritative. It then builds the list of message objects. The user can select the appropriate actions
to allow by clicking the “Get Actions…” button associated to the message object from the list. The
user can subsequently select the appropriate actions to be allowed through by checking or un-
checking the checkboxes next to the list of actions associated to the selected message object.

Note: at this time the target gateway must be configured with all the message objects for which it is
authoritative. Before a gateway can be added as a target, it must be configured with the required
message objects. The appropriate message object/action combinations can be selected on this
screen. In other words, if the message object is not already associated to the target gateway, it will
not be listed as an object that can be selected on this page. However, if the requesting application
does not currently have the selected message object/action combination in its configuration, the
Console will automatically add it so there will be no need to update the requesting application’s
configuration for this.

 Page 82 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

Once the appropriate proxy criteria/rules have been established, the user may click the “Save”
button and the configuration document for the Proxy will be updated accordingly. The next time the
Proxy is restarted, it will allow the requesting application to send requests to the selected target
based on the rules specified here.

TODO: New Feature

- Request Time Limit
- Finish button

 Page 83 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

The Logging Service Page

The Logging Service Page will present the user with an interface to administer the enterprise
logging service (a.k.a., ELS). The Logging Service is an OpenEAI-based gateway that consumes
and processes all synchronization (sync) messages published by all sync-producing applications or
gateways. Additionally, the Logging Service consumes Sync-Error-Sync messages published by
sync-consuming gateways when they encounter an error processing a consumed message. So,
like the Router and Proxy, the Logging Service provides another piece of EAI middleware.
Organizations can view the messages that have been published by all applications and generate
reports related to the messages being produced, and can view any errors and correlate those
errors with the messages that caused them.

 Page 84 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

When an OpenEAI based sync-producing application publishes a message, it actually publishes
that messages to two topics. First, it publishes the message to the Router topic as mentioned in
the Router overview section of this document. Second, it publishes that same exact message to
the ELS topic. It does this automatically without any additional coding needed. This is just part of
the OpenEAI PubSubProducer foundation.

Likewise, when a sync-consuming gateway has errors processing a consumed message, it is
required to publish a Sync-Error-Sync message. These messages are consumed by the
SyncErrorLogger portion of ELS and persisted for later use.

The Logging Service is an OpenEAI-based gateway that serves a very specific purpose. Therefore,
much of its configuration is very similar to any gateway. However, because of the specialized
purpose served by the Logging Service, the Console provides specific features related to Logging
Service configuration and administration.

Future releases of the console will provide various reports that can be used to keep track of the
messages that are being published and additionally correlate error messages that are published to
the message(s) that were being processed when the error occurred. Once the analysis has been
performed and the cause of the problem remedied, the user will be able to republish those
messages to the intended target.

[TODO - insert Logging Service overview diagram of some sort here, like the Router and
Proxy overview diagrams]

After the user logs into the application, the user can select the “Logging Service Page” tab from the
main navigation bar at the top of the page. This will take them to the Logging Service Page.
On this page, the user is presented with high-level configuration information associated to the
Logging Service. The Logging Service is configured via an entry in the t_app_config table in the
database. This is the entry that is being manipulated via the Console. It is typically not necessary
to modify this entry manually (i.e. outside of the console).

On the Logging Service Page, the user is presented with several pieces of information
regarding the service. These include:

• The “ID” associated to the logging service, which the user may change (future release).
• The status of the ELS (Running or Stopped).
• The description associated with the logging service, which the user may change.
• The amount of time the ELS has been running (if it’s running)
• The last time the ELS was run
• The last time the ELS was modified
• Last user associated with modfiying the ELS
• Configuration revision

In addition to these pieces of information, other “gateway-specific” functions are available. The
user has the ability to perform the following functions related to the logging service on the Logging
Service Page:

• Start the ELS by clicking on the “Start” button. When you start ELS via the console, it will
initiate a new native process to run it in. Because of this, it is important to remember that
when you start ELS from within the console, you should always stop it using the console

 Page 85 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

(when it needs to be stopped that is). ELS is designed so that it should rarely need to be
stopped but when it is necessary to stop it, remember to stop it via the console. This will
prevent “orphan” processes that will remain running even when/if the console is closed or
even if the application server is stopped. This behavior may vary based on the operating
system being used but in general, any gateway/application that is started via the console
should also be stopped via the console. If for some reason you forget to stop a
gateway/application via the console, you can also look for the specific java process that
was initiated and kill it manually but that is generally not recommended unless it’s
necessary. Refer to the what happens when an application or gateway is started section of
this document for more information.

• Stop the ELS by clicking on the “Stop” button. This will terminate the process associated
to the Logging Service.

• Save any changes made to the configuration of the ELS (the description for example that
may be changed on the ELS main page). When the ELS is restarted, it will use the new
settings.

• View the consumers associated to the ELS. For ELS, there are generally at least two
consumers. One consumer that simply persists all sync messages published and one
consumer that persists the Sync-Error-Sync messages mentioned previously.

• View one of several canned reports that provide information related to the processing
that has been performed by the ELS at a given point in time [TODO: more on this].

• View and configure the file associated to the Logging Service.
• Deployment Status - ?
• Revision History

o The user is taken to a page that displays a table of the complete revision history for
the selected application. This is useful for keeping track of who makes changes to
the applications managed by this instance of the ESB.

• View/Edit runtime environment configuration
o The JVM Process Properties page should open. Everything should be blank

except for the Process Identifier and Console Identifier text fields. Those fields
should be disabled.

• View most recently used runtime environment
o The Recently Used Runtime Environment page should open. There should be six

categories of runtime information displayed:
 JVM Arguments
 Application Id
 Application Runner
 Java Home
 Classpath
 Config element file spec

o All items should be collapsed initially.
• Search and Replace in this application

o Opens the Search and Replace page. Use this interface to perform mass "search
and replaces" in the configurations of applications being managed by this ESB.

o IMPORTANT: This action should be performed with extreme caution
• Export/Edit Application’s XML Configuration

 Page 86 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

o The Export/Edit Application Configuration page should open. The text area in the
middle of the page should be populated with XML content that is the configuration
for this application.

o Warning: Changes made on this screen should be made with caution. Click the
Edit button to manually edit this application's configuration. Click the Save button
to save the changes made to the configuration.

ELS Consumers Tab

When the user selects “Consumers” tab, a list of consumers associated to ELS is presented. As
mentioned above, there are generally two consumers associated to the ELS (one that persists all
sync messages published and one that persists Sync-Error-Sync messages that are published
when sync consuming gateways encounter errors processing a message they have consumed.
The consumers used by the ELS are just like any other PubSubConsumer used by any other
OpenEAI-based gateway. This particular consumer executes the specific ELS commands that
implement the business logic associated to the ELS (namely, logging the sync messages
mentioned previously). Once the user has selected a consumer from the list, they may perform the
following actions on that consumer:

• Edit the consumer’s configuration by clicking on the “Edit” button. When the user clicks
on the “Edit” button, they will be taken to the Consumer Details Page, where they can
change specific information related to the consumer itself. [TODO: more information on
the detailed consumer/command configuration for logging and error logging
services]

TODO: More screen shots and documentation regarding Logging Service reports/utilities

 Page 87 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

What happens when an application or gateway is started?

When an application or gateway is started via the Console a new process is spawned to run that
component. This is just an invocation of a JVM (i.e., a Java execution). When this process is
started, the console, dynamically builds a CLASSPATH that will be used to run the process. The
CLASSPATH will include all libraries that needed to start the gateway or application. In order to
build this CLASSPATH, the console needs to know where the libraries are associated to that
application (i.e., .jar or .zip files that contain the required Java classes). In the Console web.xml
file, there is another context-param that is used to tell the console this location. This parameter
is called defaultRuntimeLibPaths and should contain a colon or semi-colon delimited list of
paths containing runtime libraries (jars and zip files) that are required by applications that may be
deployed into and managed by the console. The console will parse this list of paths and build the
CLASSPATH appropriately based on what it finds in those paths.

Because the console builds this CLASSPATH dynamically when you start a component, it will
automatically detect new or changed applications that are added to any of these
additionalRuntimeLibPaths without a bounce or re-start of the application server.

This process is a standard, platform independent java.lang.Process object. If the process
successfully starts, the console maintains a reference to this process (which is how it stops it later if
needed). Because this is a spawned process, it will not go away when the user’s browser is closed
or even when the application server is stopped. Therefore, it is important to remember that when
you start an application/gateway via the Console, you should stop it via the console. If for some
reason that doesn’t happen, the process will keep running and can only be stopped by finding the
process in the process table and forcibly terminating it.

[TODO – Redo this section to take into account the dynamic application configuration
features of the console. T_app_configs and t_app_settings]

 Page 88 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

Reports/Administrative views
[TODO – more on this]

The Transformation Service

The Transformation Service for OpenEAI is responsible for consuming inbound synchronization
messages from one system, ‘system A’, and transforming them into messages that are specific to
another system, ‘system B’. The transformed message is then sent on to interested targets.

The RDBMS Connector Suite

The RDBMS connector suite is a suite of analysis artifacts, runtime artifacts and applications that
provide general foundation to perform the following tasks:

1. Provide an analysis and runtime artifact that describes the relationship between an
enterprise object and a set of database structures. i.e., “mappings” to tables from objects
and mappings from objects to tables.

2. Read records from an extract file, build enterprise objects from the content of the extract(s)
and publish synchronization messages based on the content. Generally, these files will be
built and dropped off by legacy systems and will represent a series of transactions. The
typical goal is for the transactions listed in the extracts to be applied to some other data
source. For simplicity we’ll call this piece of infrastructure the “extract publisher”.

3. Consume synchronization messages from an authoritative source and build an extract file
from the content of those messages (i.e., the enterprise objects contained within those
messages). This extract can then be processed by a legacy system that’s already built to
process these types of files. We’ll call this piece of infrastructure the “extract builder”.

These components will be general infrastructure. This means they will be used as often as possible
to process many different extracts, for both scenarios listed above. This infrastructure is not built
with any one particular extract in mind, but rather is intended to be general enough to work for
many different ones.

The File Connector Suite
Not administrable via the Console for this release. Note, even though there are no specific Console
user interfaces for the File Connector Suite with this release, it is a part of the toolkit and can be run
just like any other general application. In the future, there will be more specific interfaces that aid in
the administration, management and running of file connections via the File Connector Suite.

The File Connector suite is a suite of analysis artifacts, runtime artifacts and applications that
provide general foundation to perform the following tasks:

 Page 89 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

1. Provide an analysis and runtime artifact that describes the relationship between an
enterprise object and a data extract file.

2. Read records from an extract file, build enterprise objects from the content of the extract(s)
and publish synchronization messages based on the content. Generally, these files will be
built and dropped off by legacy systems and will represent a series of transactions. The
typical goal is for the transactions listed in the extracts to be applied to some other data
source. For simplicity we’ll call this piece of infrastructure the “extract publisher”.

3. Consume synchronization messages from an authoritative source and build an extract file
from the content of those messages (i.e., the enterprise objects contained within those
messages). This extract can then be processed by a legacy system that’s already built to
process these types of files. We’ll call this piece of infrastructure the “extract builder”.

These components are general infrastructure. This means they will be used as often as possible to
process many different extracts, for both scenarios listed above. This infrastructure is not built with
any one particular extract in mind, but rather is intended to be general enough to work for many
different ones.

The Test Suite Application
Not administrable via the Console for this release. Note, even though there are no specific Console
user interfaces for the Test Suite Application with this release, it is a part of the toolkit and can be
run just like any other general application. In the future, there will be more specific interfaces that
aid in the administration, management and running of test suites via the test suite application.

[TODO: more information on the detailed configuration of the Test Suite]

The Message Object Generation Application
Not administrable via the Console for this release. Note, even though there are no specific Console
user interfaces for the Message Object Generation Application (MOAGen) with this release, it is a
part of the toolkit and can be run just like any other general application. In the future, there will be
more specific interfaces that aid in the administration, management and generation of message
object APIs via the Message Object Generation Application.

[TODO: more information on the detailed configuration of the MOA Gen Application]

 Page 90 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

The Console Configuration Parameters
The following table provides a list of all external configuration parameters used by the Console.
The values associated to these parameters may be changed at runtime to affect the behavior of the
application. Most of these parameters are currently stored in the
T_DEFAULT_CONFIG_PROPERTIES table in the ESB30 schema and they can be modified fia the
Configuration Defaults interface within the console. However, there are three properties that are
required prior to application initialization (i.e., before a database connection is established) and
those properties can be found in the web.xml file associated to the Console web application. The
location of these properties is indicated in the table below.

Important Note: The names of these parameters should NOT be changed. In some cases,
the console looks for these specific parameter names and if they change the console will
have issues running. The only thing that may have to change are the actual values
associated to the parameters.

Parameter Name Parameter Description Sample Value
applicationReport This parameter is used to provide the

description of the “Application Report” which is
one of the canned reports available via the
console. This description is displayed when the
user selects the type of report they want to
view.

messageObjectReport This parameter is used to provide the
description of the “Message Object Report”
which is one of the canned reports available via
the console. This description is displayed when
the user selects the type of report they want to
view.

basePrimedDocPath This is the path that will be used by the console
to build primed document paths when
associating primed documents to message
objects as they are added via the console.

baseEoDocPath This is the path that will be used by the console
to build enterprise object document (EO docs)
paths when associating EO docs to message
objects as they are added via the console.

contextPath This is the path to the console web application’s
“WEB-INF” directory which is used to build
CLASSPATHS and derive other information.

appRunner This is the java class name of the “application
runner” that is used to start applications via the
console.

headerImagePath This is the path to the header image that will be
displayed across the top of the web pages of
the console.

proxyConfigDocPath The fully qualified path to the Proxy Service
OpenEAI deployment descriptor (config doc).

routerConfigDocPath The fully qualified path to the Routing Service
OpenEAI deployment descriptor (config doc).

elsConfigDocPath The fully qualified path to the Logging Service

 Page 91 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

Parameter Name Parameter Description Sample Value
OpenEAI deployment descriptor (config doc).

generalConfigDocPath The fully qualified path to the OpenEAI
deployment descriptor (config doc) that contains
all other applications managed by the console.

xmlLayoutManager This is the java class of the OpenEAI XML
Layout manager implementation that is used
when building message objects as they are
added via the console.

toolKitHome This is the base toolkit directory (i.e. –
ESB_HOME2)

toolKitLogPath This is the path where the console will look for
log files that are created by applications being
managed by the console.

testSuiteClassName The name of the Java class that is the test suite
application. The console uses this to determine
if an application is an instance of the Test Suite
application and provides a link to view the Test
Suite Summary document if so.

testSuiteSummaryPathPropertyName The name of the property associated to the Test
Suite application that tells the console where to
find the summary document created by the Test
Suite application

testSuiteDocUriPropertyName The name of the property associated to the Test
Suite application that tells the console where to
find the actual test suite document that is input
to the Test Suite application and provides the
instructions to the test suite that it will execute.

testSuitePropertyCategoryName The name of the Property Category that
contains all the test suite specific properties
used by the test suite application.

ldapHost The LDAP host that the console will bind to
when performing authentication.

NOTE: currently this parameter is still
specified in the web.xml file.

searchBaseDn The base Distinguished Name (DN) that will be
searched when retrieving and verifying users in
the directory server.

NOTE: currently this parameter is still
specified in the web.xml file.

bindFilter The directory attribute that will be appened onto
the user name that the user logs in as. NOTE:
this must also be specified in the jaas.conf file
(or other appropriate JAAS configuration).

NOTE: currently this parameter is still
specified in the web.xml file.

consoleProcessIdentifier A property that is added to the process (JVM)
when an application is started so administrators
can determine the applications that have been

 Page 92 of 93

$Revision: 1.10 $
$Date: 7/6/2007 8:30:44 PM$
$Source: /cvs/repositories/openii2/openii2/documentation/Console/UserGuide-3.0.doc,v $ CONFIDENTIAL

OpenII – Open Integration Incorporated DRAFT © 2007

Parameter Name Parameter Description Sample Value
started by the console externally.

maxProcessInitializationTime The amount of time (in milliseconds) that the
console should wait for an application to
complete initialization (startup).

supportEmailAddress The email address where email comments will
be sent by the console when the user
encounters an issue or when the user uses the
“contact us” feature of the console.

mailServerName The SMTP mail host that will be used to send
and email.

adminRoleName The name of the console administrator role.
This is the role that can manage other users of
the console.

additionalRuntimeLibPaths Colon or semi-colon delimited (depending on
the OS) list of paths containing runtime libraries
(jars and zip files) that are required by
applications that may be deployed into and
managed by the console.

linkColor The color that will be used for the hyperlinks
that are displayed in the Headers and Footers
of the Console application. This value can be
changed to correspond with the header image
being used if needed. Valid colors are (case
sensitive):

aqua, red, fuchsia, white, olive, yellow, gray,
black, navy, green, teal, lime, maroon, orange,
blue, purple

 Page 93 of 93

	What this guide covers
	About the OpenII Toolkit for OpenEAI
	What’s new
	Installation and setup
	The Administrative Console
	The Login Page
	JAAS Configuration
	Authorization
	User Maintenance
	Site-specific Branding
	Package Descriptors
	The Scheduled Application Details Page
	The Schedule Details Page
	The Router Targets Page
	The Add Router Target Page
	The Select Routing Criteria Page
	Add Proxied Application Page
	Proxied Application Maintenance Page
	Targets this Application can Send Requests to
	Add New Proxy Target Page
	Select Target Proxy Criteria Page
	ELS Consumers Tab
	Reports/Administrative views

